DOI QR코드

DOI QR Code

Large-Scale Screening of the Plant Extracts for Antifungal Activity against the Plant Pathogenic Fungi

  • Song Hee, Lee (Plant Immunity Research Center, Seoul National University) ;
  • Young Taek, Oh (Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Do-Yeon, Lee (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Eunbyeol, Cho (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University) ;
  • Byung Su, Hwang (Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Junhyun, Jeon (Plant Immunity Research Center, Seoul National University)
  • Received : 2022.07.21
  • Accepted : 2022.10.09
  • Published : 2022.12.01

Abstract

Plants produce chemicals of immense diversity that provide great opportunities for development of new antifungal compounds. In search for environment-friendly alternatives to the fungicide of current use, we screened plant extracts obtained from more than eight hundred plant materials collected in Korea for their antifungal activity against the model plant pathogenic fungus, Magnaporthe oryzae. This initial screening identified antifungal activities from the eleven plant extract samples, among which nine showed reproducibility in the follow-up screening. These nine samples were able to suppress not only M. oryzae but also other fungal pathogens. Interestingly, the plant extracts obtained from Actinostemma lobatum comprised five out of eight samples, and were the most effective in their antifungal activity. We found that butanol fraction of the A. lobatum extract is the most potent. Identification and characterization of antifungal substances in the A. lobatum extracts would provide the promising lead compounds for new fungicide.

Keywords

Acknowledgement

This work was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202202110), and by a grant from the National Research Foundation of Korea (NRF-2018R1A5A1023599).

References

  1. Adnew, A., Shifa, H. and Mohammed, A. 2022. Antifungal activity of plant extracts against postharvest mould fungi associated with coffee (Coffea arabica L.) in Bale Zone, Ethiopia. Org. Agric. 12:107-124. https://doi.org/10.1007/s13165-022-00385-3
  2. Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S. and Dabur, R. 2009. Natural products-anti-fungal agents derived from plants. J. Asian Nat. Prod. Res. 11:621-638. https://doi.org/10.1080/10286020902942350
  3. Cao, J.-Q., Li, W., Tang, Y., Zhang, X.-r., Li, W. and Zhao, Y.-Q. 2015. Three new triterpene saponins from Actinostemma lobatum Maxim. and their cytotoxicity in vitro. Phytochem. Lett. 11:301-305. https://doi.org/10.1016/j.phytol.2015.01.016
  4. Chen, Y., Lin, R., Yang, S. and Gao, Z. 2005. Study on the antibacterial activity of Actinostemma tenerum polysaccharides. Prevent. Med. Tribune 15:1240-1241.
  5. Dean, R. A. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234. https://doi.org/10.1146/annurev.phyto.35.1.211
  6. Eustice, D. C. and Wilhelm, J. M. 1984. Mechanisms of action of aminoglycoside antibiotics in eucaryotic protein synthesis. Antimicrob. Agents Chemother. 26:53-60. https://doi.org/10.1128/AAC.26.1.53
  7. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186-194. https://doi.org/10.1038/nature10947
  8. Fujioka, T., Kashiwada, Y., Okabe, H., Mihashi, K. and Lee, K.-H. 1996. Antitumor agents 171. Cytotoxicities of lobatosides B, C, D, and E, cyclic bisdesmosides isolated from Actinostemma lobatum Maxim. Bioorg. Med. Chem. Lett. 6:2807-2810. https://doi.org/10.1016/S0960-894X(96)00522-7
  9. Gonzalez, A., Jimenez, A., Vazquez, D., Davies, J. E. and Schindler, D. 1978. Studies on the mode of action of hygromycin B, an inhibitor of translocation in eukaryotes. Biochim. Biophys. Acta 521:459-469. https://doi.org/10.1016/0005-2787(78)90287-3
  10. Hernandez-Ceja, A., Loeza-Lara, P. D., Espinosa-Garcia, F. J., Garcia-Rodriguez, Y. M., Medina-Medrano, J. R., Gutierrez-Hernandez, G. F. and Ceja-Torres, L. F. 2021. In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry (Vaccinium sp.). Plants (Basel) 10:852.
  11. Howard, R. J. and Valent, B. 1996. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50:491-512. https://doi.org/10.1146/annurev.micro.50.1.491
  12. Kankanala, P., Czymmek, K. and Valent, B. 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706-724. https://doi.org/10.1105/tpc.106.046300
  13. Kim, D. K. 2010. Antioxidative constituents from the whole plant of Actinostemma lobatum Maxim. J. Korean Soc. Appl. Biol. Chem. 53:746-751. https://doi.org/10.3839/jksabc.2010.113
  14. Kim, K.-H., Lee, H.-J., Lee, J.-H., Jang, Y.-S., Kim, D.-K., Shim, B.-S., Cho, K.-H., Ko, S.-G., Ahn, K.-S. and Kim, S.-H. 2008. Blockade of glycoprotein IIb/IIIa mediates the antithrombotic activity of butanol fraction of Actinostemma lobatum Maxim. J. Ethnopharmacol. 116:431-438. https://doi.org/10.1016/j.jep.2007.12.012
  15. Li, W., Cao, J., Tang, Y., Zhang, L., Xie, Q., Shen, H. and Zhao, Y. 2012. Cyclic bisdesmosides from Actinostemma lobatum MAXIM (Cucurbitaceae) and their in vitro cytotoxicity. Fitoterapia 83:147-152. https://doi.org/10.1016/j.fitote.2011.10.008
  16. Mann, R. L. and Bromer, W. W. 1958. The isolation of a second antibiotic from Streptomyces hygroscopicus. J. Am. Chem. Soc. 80:2714-2716. https://doi.org/10.1021/ja01544a032
  17. Mohammadi, A., Nazari, H., Imani, S. and Amrollahi, H. 2014. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 24:e1-e8. https://doi.org/10.1016/j.mycmed.2014.02.006
  18. Schoss, K., Kocevar Glavac, N., Dolenc Koce, J. and Anzlovar, S. 2022. Supercritical CO2 plant extracts show antifungal activities against crop-borne fungi. Molecules 27:1132.
  19. Surapuram, V., Setzer, W. N., McFeeters, R. L. and McFeeters, H. 2014. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat. Prod. Commun. 9:1603-1605.
  20. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957