References
- Rajkomar A, Kannan A, Chen K, et al. Automatically charting symptoms from patient-physician conversations using machine learning. JAMA Intern Med 2019;179:836-8. https://doi.org/10.1001/jamainternmed.2018.8558
- Nilsson J, Ohlsson M, Thulin L, Hoglund P, Nashef SA, Brandt J. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg 2006;132:12-9. https://doi.org/10.1016/j.jtcvs.2005.12.055
- Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019;110:12-22. https://doi.org/10.1016/j.jclinepi.2019.02.004
- Ranucci M, Johnson I, Willcox T, et al. Goal-directed perfusion to reduce acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg 2018;156:1918-27. https://doi.org/10.1016/j.jtcvs.2018.04.045
- Andras I, Mazzone E, van Leeuwen FW, et al. Artificial intelligence and robotics: a combination that is changing the operating room. World J Urol 2020;38:2359-66. https://doi.org/10.1007/s00345-019-03037-6
- Wang Z, Majewicz Fey A. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg 2018;13:1959-70. https://doi.org/10.1007/s11548-018-1860-1
- Tanwani AK, Sermanet P, Yan A, Anand R, Phielipp M, Goldberg K. Motion2vec: semi-supervised representation learning from surgical videos. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA); 2020 May 31-Aug 31; Paris, France. Piscataway (NJ): IEEE; 2020. https://doi.org/10.1109/ICRA40945.2020.9197324
- LaPointe J. OR efficiency, machine learning boosts UCHealth's revenue by $10M [Internet]. Danvers (MA): Recyle Intelligence; 2018 [cited 2022 Jan 25]. Available from: https://revcycleintelligence.com/news/or-efficiency-machine-learning-boosts-uchealths-revenueby-10m.
- Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A deep learning model to triage screening mammograms: a simulation study. Radiology 2019;293:38-46. https://doi.org/10.1148/radiol.2019182908
- Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyas B. 3D deep learning on medical images: a review. Sensors (Basel) 2020;20:5097. https://doi.org/10.3390/s20185097
- Ossai CI, Wickramasinghe N. Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit: a critical overview. Int J Med Inform 2021;150:104469. https://doi.org/10.1016/j.ijmedinf.2021.104469
- Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform 2019;125:55-61. https://doi.org/10.1016/j.ijmedinf.2019.02.002
- Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8. https://doi.org/10.1038/nature21056
- Luz E. CyberMDX discovers vulnerability in the Becton Dickinson Alaris TIVA syringe pump [Internet]. New York (NY) CyberMDX; 2018 [cited 2022 Jan 25]. Available from: https://www.cybermdx.com/research/vulnerability-bd-alaris-pump-180508.