DOI QR코드

DOI QR Code

Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications

  • Guengerich, F. Peter (Department of Biochemistry, Vanderbilt University School of Medicine)
  • Received : 2021.06.22
  • Accepted : 2021.07.22
  • Published : 2022.01.01

Abstract

Drug-drug interactions are a major cause of hospitalization and deaths related to drug use. A large fraction of these is due to inhibition of enzymes involved in drug metabolism and transport, particularly cytochrome P450 (P450) enzymes. Understanding basic mechanisms of enzyme inhibition is important, particularly in terms of reversibility and the use of the appropriate parameters. In addition to drug-drug interactions, issues have involved interactions of drugs with foods and natural products related to P450 enzymes. Predicting drug-drug interactions is a major effort in drug development in the pharmaceutical industry and regulatory agencies. With appropriate in vitro experiments, it is possible to stratify clinical drug-drug interaction studies. A better understanding of drug interactions and training of physicians and pharmacists has developed. Finally, some P450s have been the targets of drugs in some cancers and other disease states.

Keywords

Acknowledgement

Thanks are extended to K. Trisler for assistance in preparation of the manuscript. P450 research in the author's laboratory is supported by National Institutes of Health grant R01 GM118122. The content is solely the responsibility of the author and does not necessarily represent the official view of the National Institutes of Health.

References

  1. Abeles, R. H. and Maycock, A. L. (1976) Suicide enzyme inactivators. Acct. Chem. Res. 9, 313-319. https://doi.org/10.1021/ar50105a001
  2. Albertolle, M. E., Kim, D., Nagy, L. D., Yun, C. H., Pozzi, A., Savas, U., Johnson, E. F. and Guengerich, F. P. (2017) Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. J. Biol.Chem. 292, 11230-11242. https://doi.org/10.1074/jbc.M117.792200
  3. Albertolle, M. E., Phan, T. T. N., Pozzi, A. and Guengerich, F. P. (2018) Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol. Cell. Proteomics 17, 889-900. https://doi.org/10.1074/mcp.RA117.000382
  4. Albertolle, M. E., Glass, S. M., Trefts, E. and Guengerich, F. P. (2019) Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells. J. Biol. Chem. 294, 6522-6530. https://doi.org/10.1074/jbc.AC118.007225
  5. Alyamani, M., Li, Z. F., Upadhyay, S. K., Anderson, D. J., Auchus, R. J. and Sharifi, N. (2017) Development and validation of a novel LC-MS/MS method for simultaneous determination of abiraterone and its seven steroidal metabolites in human serum: innovation in separation of diastereoisomers without use of a chiral column. J. Steroid Biochem. Mol. Biol. 172, 231-239. https://doi.org/10.1016/j.jsbmb.2016.04.002
  6. Attard, G., Reid, A. H., Auchus, R. J., Hughes, B. A., Cassidy, A. M., Thompson, E., Oommen, N. B., Folkerd, E., Dowsett, M., Arlt, W. and de Bono, J. S. (2012) Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrated men with advanced prostate cancer. J. Clin. Endocrinol. Metab. 97, 507-516. https://doi.org/10.1210/jc.2011-2189
  7. Auchus, R. J. and Miller, W. L. (2015) P450 enzymes in steroid processing. In Cytochrome P450: Structure, Mechanism, and Biochemistry (4th ed.) (P. R. Ortiz de Montellano, ed.), pp. 851-879. Springer, New York.
  8. Bailey, D. G., Edgar, B., Spence, J. D., Munzo, C. and Arnold, J. M. O. (1990) Felodipine and nifedipine interactions with grapefruit juice. Clin. Pharmacol. Ther. 47, 180.
  9. Bailey, D. G., Spence, J. D., Munoz, C. and Arnold, J. M. O. (1991) Interaction of citrus juices with felodipine and nifedipine. Lancet 337, 268-269. https://doi.org/10.1016/0140-6736(91)90872-M
  10. Bailey, D. G., Freeman, D. J., Melendez, L. J., Kreeft, J. H., Edgar, B. and Carruthers, S. G. (1993) Quinidine interaction with nifedipine and felodipine: pharmacokinetic and pharmacodynamic evaluation. Clin. Pharmacol. Ther. 53, 354-359. https://doi.org/10.1038/clpt.1993.32
  11. Bailey, D. G., Dresser, G. and Arnold, J. M. (2013) Grapefruit-medication interactions: forbidden fruit or avoidable consequences? Can. Med. Assoc. J. 185, 309-316. https://doi.org/10.1503/cmaj.120951
  12. Bhutani, P., Joshi, G., Raja, N., Bachhav, N., Rajanna, P. K., Bhutani, H., Paul, A. T. and Kumar, R. (2021) US FDA approved drugs from 2015-June 2020: a perspective. J. Med. Chem. 64, 2339-2381. https://doi.org/10.1021/acs.jmedchem.0c01786
  13. Bjornsson, T. D., Callaghan, J. T., Einolf, H. J., Fischer, V., Gan, L., Grimm, S., Kao, J., King, S. P., Miwa, G., Ni, L., Kumar, G., McLeod, J., Obach, R. S., Roberts, S., Roe, A., Shah, A., Snikeris, F., Sullivan, J. T., Tweedie, D., Vega, J. M., Walsh, J. and Wrighton, S. A. (2003a) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. 31, 815-832. https://doi.org/10.1124/dmd.31.7.815
  14. Bjornsson, T. D., Callaghan, J. T., Einolf, H. J., Fischer, V., Gan, L., Grimm, S., Kao, J., King, S. P., Miwa, G., Ni, L., Kumar, G., McLeod, J., Obach, S. R., Roberts, S., Roe, A., Shah, A., Snikeris, F., Sullivan, J. T., Tweedie, D., Vega, J. M., Walsh, J. and Wrighton, S. A. (2003b) The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J. Clin. Pharmacol. 43, 443-469. https://doi.org/10.1177/0091270003252519
  15. Bolt, H. M., Bolt, M. and Kappus, H. (1977) Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man. Acta Endocrinol. 85, 189-197. https://doi.org/10.1530/acta.0.0850189
  16. Boscaro, M., Barzon, L. and Sonino, N. (2000) The diagnosis of Cushing's syndrome: atypical presentations and laboratory shortcomings. Arch. Int. Med. 160, 3045-3053. https://doi.org/10.1001/archinte.160.20.3045
  17. Chen, L., Krekels, E. H. J., Verweij, P. E., Bui, J. B., Knibbe, C. A. J. and Bruggemann, R. J. M. (2020) Pharmacokinetics and pharmacodynamics of posaconazole. Drugs 80, 671-695. https://doi.org/10.1007/s40265-020-01306-y
  18. Cheong, E. J. Y., Nair, P. C., Neo, R. W. Y., Tu, H. T., Lin, F., Chiong, E., Esuvaranathan, K., Fan, H., Szmulewitz, R. Z., Peer, C. J., Figg, W. D., Chai, C. L. L., Miners, J. O. and Chan, E. C. Y. (2020) Slow-, tightbinding inhibition of CYP17A1 by abiraterone redefines its kinetic selectivity and dosing regimen. J. Pharmacol. Exp. Ther. 374, 438-451. https://doi.org/10.1124/jpet.120.265868
  19. Child, S. A. and Guengerich, F. P. (2020) Multistep binding of the nonsteroidal inhibitors orteronel and seviteronel to human cytochrome P450 17A1 and relevance to inhibition of enzyme activity. J. Med. Chem. 63, 6513-6522. https://doi.org/10.1021/acs.jmedchem.9b01849
  20. Chu, J. W., Matthias, D. F., Belanoff, J., Schatzberg, A., Hoffman, A. R. and Feldman, D. (2001) Successful long-term treatment of refractory Cushing's disease with high-dose mifepristone (RU 486). J. Clin. Endocrinol. Metab. 86, 3568-3573. https://doi.org/10.1210/jc.86.8.3568
  21. Conney, A. H. (2003) Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the Seventh DeWitt S. Goodman Lecture. Cancer Res. 63, 7005-7031.
  22. Correia, M. A. and Hollenberg, P. F. (2015) Inhibition of cytochrome P450 enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry (4th ed.) (P. R. Ortiz de Montellano, ed.), pp. 177-259. Springer, New York.
  23. DeVore, N. M. and Scott, E. E. (2012) Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482, 116-119. https://doi.org/10.1038/nature10743
  24. Dixon, M. and Webb, E. C. (1964) Enzymes (2nd ed.). Longman's, Green, London.
  25. Dresser, G. K., Spence, J. D. and Bailey, D. G. (2000) Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 38, 41-57. https://doi.org/10.2165/00003088-200038010-00003
  26. Edgar, B., Bailey, D. G., Bergstrand, R., Johnsson, G. and Lurje, L. (1990) Formulation dependent interaction between felodipine and grapefruit juice. Clin. Pharmacol. Ther. 47, 181.
  27. Ekroos, M. and Sjogren, T. (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc. Natl. Acad. Sci. U.S.A. 103, 13682-13687. https://doi.org/10.1073/pnas.0603236103
  28. Emmerich, J., Hu, Q., Hanke, N. and Hartmann, R. W. (2013) Cushing's syndrome: development of highly potent and selective CYP11B1 inhibitors of the (pyridylmethyl)pyridine type. J. Med. Chem. 56, 6022-6032. https://doi.org/10.1021/jm400240r
  29. Emmerich, J., van Koppen, C. J., Burkhart, J. L., Hu, Q., Siebenburger, L., Boerger, C., Scheuer, C., Laschke, M. W., Menger, M. D. and Hartmann, R. W. (2017) Lead optimization generates CYP11B1 inhibitors of pyridylmethyl isoxazole type with improved pharmacological profile for the treatment of Cushing's disease. J. Med. Chem. 60, 5086-5098. https://doi.org/10.1021/acs.jmedchem.7b00437
  30. Eng, H., Tseng, E., Cerny, M. A., Goosen, T. C. and Obach, R. S. (2021) Cytochrome P450 3A time-dependent inhibition assays are too sensitive for identification of drugs causing clinically significant drug-drug interactions: a comparison of human liver microsomes and hepatocytes and definition of boundaries for inactivation rate constants. Drug Metab. Dispos. 49, 442-450. https://doi.org/10.1124/dmd.121.000356
  31. Fahmi, O. A., Hurst, S., Plowchalk, D., Cook, J., Guo, F., Youdim, K., Dickins, M., Phipps, A., Darekar, A., Hyland, R. and Obach, R. S. (2009) Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab. Dispos. 37, 1658-1666. https://doi.org/10.1124/dmd.108.026252
  32. FDA (2012) Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations. U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), February 2012 Clinical Pharmacology, Silver Spring, MD.
  33. Fekry, M. I., Xiao, Y., Berg, J. Z. and Guengerich, F. P. (2019) A role for the orphan human cytochrome P450 2S1 in polyunsaturated fatty acid w-1 hydroxylation using an untargeted metabolomic approach. Drug Metab. Dispos. 47, 1325-1332. https://doi.org/10.1124/dmd.119.089086
  34. Flockhart, D. A. (2007) Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine. Available from: https://drug-interactions.medicine.iu.edu/ [accessed 2021 Aug 27].
  35. Franklin, M. R. and Buening, M. K. (1974) The formation of complexes absorbing at 455 nm form cytochrome P450 and metabolites of compounds related to SKF 525A. Drug Metab. Dispos. 2, 386-390.
  36. Friggeri, L., Hargrove, T. Y., Rachakonda, G., Williams, A. D., Wawrzak, Z., Di Santo, R., De Vita, D., Waterman, M. R., Tortorella, S., Villalta, F. and Lepesheva, G. I. (2014) Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition. J. Med. Chem. 57, 6704-6717. https://doi.org/10.1021/jm500739f
  37. Friggeri, L., Hargrove, T. Y., Wawrzak, Z., Guengerich, F. P. and Lepesheva, G. I. (2019) Validation of human sterol 14α-demethylase (CYP51) druggability: structure-guided design, synthesis and evaluation of stoichiometric, functionally irreversible inhibitors. J. Med. Chem. 62, 10391-10401. https://doi.org/10.1021/acs.jmedchem.9b01485
  38. Goosen, T. C., Cillie, D., Bailey, D. G., Yu, C., He, K., Hollenberg, P. F., Woster, P. M., Cohen, L., Williams, J. A., Rheeders, M. and Dijkstra, H. P. (2004) Bergamottin contribution to the grapefruit juicefelodipine interaction and disposition in humans. Clin. Pharmacol. Ther. 76, 607-617. https://doi.org/10.1016/j.clpt.2004.08.019
  39. Guengerich, F. P. (1988) Oxidation of 17α-ethynylestradiol by human liver cytochrome P-450. Mol. Pharmacol. 33, 500-508.
  40. Guengerich, F. P. (1989) Characterization of human microsomal cytochrome P-450 enzymes. Annu. Rev. Pharmacol. Toxicol. 29, 241-264. https://doi.org/10.1146/annurev.pa.29.040189.001325
  41. Guengerich, F. P. (1990a) Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem. Res. Toxicol. 3, 363-371. https://doi.org/10.1021/tx00016a015
  42. Guengerich, F. P. (1990b) Inhibition of oral contraceptive steroid-metabolizing enzymes by steroids and drugs. Am. J. Obstet. Gynecol. 163, 2159-2163. https://doi.org/10.1016/0002-9378(90)90557-n
  43. Guengerich, F. P. and Kim, D. H. (1990) In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11, 2275-2279. https://doi.org/10.1093/carcin/11.12.2275
  44. Guengerich, F. P., Brian, W. R., Iwasaki, M., Sari, M. A., Baarnhielm, C. and Berntsson, P. (1991) Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J. Med. Chem. 34, 1838-1844. https://doi.org/10.1021/jm00110a012
  45. Guengerich, F. P. (2014) Cytochrome P450-mediated drug interactions and cardiovascular toxicity: the Seldane to Allegra transformation. In Predictive ADMET: Integrated Approaches in Drug Discovery and Development (J. Wang and L. Urban, Ed.), pp. 523-534. Wiley, New York.
  46. Guengerich, F. P. (2019a) Kinetic modeling of steady-state situations in cytochrome P450 enzyme reactions. Drug Metab. Dispos. 47, 1232-1239. https://doi.org/10.1124/dmd.119.088732
  47. Guengerich, F. P. (2019b) Cytochrome P450 research and The Journal of Biological Chemistry. J. Biol. Chem. 294, 1671-1680. https://doi.org/10.1074/jbc.tm118.004144
  48. Guengerich, F. P. (2020) A history of the role of cytochrome P450 enzymes in the toxicity of drugs. Toxicol. Res. 37, 1-23. https://doi.org/10.1007/s43188-020-00056-z
  49. Guengerich, F. P., McCarty, K. D. and Chapman, J. G. (2020) Kinetics of cytochrome P450 3A4 inhibition by heterocyclic drugs defines a general sequential multistep binding process. J. Biol. Chem. 296, 100223. https://doi.org/10.1074/jbc.RA120.016855
  50. Guengerich, F. P., McCarty, K. D. and Chapman, J. G. (2021) Stepwise binding of inhibitors to human cytochrome P450 17A1 and relevance to kinetics of inhibition of androgen biosynthesis. J. Biol. Chem. 297, 100969. https://doi.org/10.1016/j.jbc.2021.100969
  51. Halpert, J. and Neal, R. A. (1980) Inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Mol. Pharmacol. 17, 427-431.
  52. Hardy, K. D., Wahlin, M. D., Papageorgiou, I., Unadkat, J. D., Rettie, A. E. and Nelson, S. D. (2014) Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells. Drug Metab. Dispos. 42, 162-171. https://doi.org/10.1124/dmd.113.054817
  53. He, K., Iyer, R., Hayes, R. N., Sinz, M. W., Woolf, T. F. and Hollenberg, P. F. (1998) Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 11, 252-259. https://doi.org/10.1021/tx970192k
  54. Hecker, M., Haurand, M., Ullrich, V. and Terao, S. (1986) Spectral studies on structure-activity relationships of thromboxane synthase inhibitors. Eur. J. Biochem. 157, 217-223. https://doi.org/10.1111/j.1432-1033.1986.tb09659.x
  55. Honig, P. K., Woosley, R. L., Zamani, K., Conner, D. P. and Cantilena, L. R., Jr. (1992) Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin. Clin. Pharmacol. Ther. 52, 231-238. https://doi.org/10.1038/clpt.1992.135
  56. Johnson, K. A. (2019) Kinetic Anaylsis for the New Enzymology (1st ed.). KinTek, Austin, TX.
  57. Kramlinger, V. M., Alvarado Rojas, M., Kanamori, T. and Guengerich, F. P. (2015) Cytochrome P450 3A enzymes catalyze the O6-demethylation of thebaine, a key step in endogenous mammalian morphine biosynthesis. J. Biol. Chem. 290, 20200-20210. https://doi.org/10.1074/jbc.M115.665331
  58. Kuby, S. A. (1991) A Study of Enzymes, Vol. I, Enzyme Catalysis, Kinetics, and Substrate Binding (Vol. 7). CRC Press, Boca Raton, FL.
  59. Kuhl, H., Jung-Hoffmann, C. and Heidt, F. (1988) Alterations in the serum levels of gestodene and SHBG during 12 cycles of treatment with 30 mg ethinylestradiol and 75 mg gestodene. Contraception 38, 477-486. https://doi.org/10.1016/0010-7824(88)90088-1
  60. Kuhl, H., Jung-Hoffmann, C. and Wiegratz, I. (1995) Gestodene-containing contraceptives. Clin. Obstet. Gynecol. 38, 829-840. https://doi.org/10.1097/00003081-199538040-00018
  61. Lepesheva, G. I., Nes, W. D., Zhou, W., Hill, G. C. and Waterman, M. R. (2004) CYP51 from Trypanosoma brucei is obtusifoliol-specific. Biochemistry 43, 10789-10799. https://doi.org/10.1021/bi048967t
  62. Lepesheva, G. I. and Waterman, M. R. (2007) Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta 1770, 467-477. https://doi.org/10.1016/j.bbagen.2006.07.018
  63. Lidegaard, O., Nielsen, L. H., Skovlund, C. W., Skjeldestad, F. E. and Lokkegaard, E. (2011) Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001-9. BMJ 343, d6423. https://doi.org/10.1136/bmj.d6423
  64. Lin, H. L., Kenaan, C. and Hollenberg, P. F. (2012) Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect. Drug Metab. Dispos. 40, 998-1006. https://doi.org/10.1124/dmd.112.044560
  65. Lin, H. L., Zhang, H. M. and Hollenberg, P. F. (2018) Formation of both heme and apoprotein adducts contributes to the mechanism-based inactivation of human CYP2J2 by 17α-ethynylestradiol. Drug Metab. Dispos. 46, 813-822. https://doi.org/10.1124/dmd.118.080903
  66. Lingappan, K., Jiang, W., Wang, L., Wang, G., Couroucli, X. I., Shivanna, B., Welty, S. E., Barrios, R., Khan, M. F., Nebert, D. W., Roberts, L. J. and Moorthy, B. (2014) Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress. Toxicol. Sci. 141, 68-77. https://doi.org/10.1093/toxsci/kfu106
  67. Malhotra, S., Bailey, D. G., Paine, M. F. and Watkins, P. B. (2001) Seville orange juice-felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins. Clin. Pharmacol. Ther. 69, 14-23. https://doi.org/10.1067/mcp.2001.113185
  68. Mansuy, D., Battioni, J. P. and Chottard, J. C. (1979) Preparation of a porphyrin-iron-carbene model for the cytochrome P450 complexes obtained upon metabolic oxidation of the insecticide synergists of the 1,3-benzodioxole series. J. Am. Chem. Soc. 101, 3971-3973. https://doi.org/10.1021/ja00508a048
  69. Montane, E., Arellano, A. L., Sanz, Y., Roca, J. and Farre, M. (2018) Drug-related deaths in hospital inpatients: a retrospective cohort study. Br. J. Clin. Pharmacol. 84, 542-552. https://doi.org/10.1111/bcp.13471
  70. Moore, L. G., Goodwin, B., Jones, S. A., Wisely, G. B., Serabjit-Singh, C. J., Wilson, T. M., Collins, J. L. and Kliewer, S. A. (2000) St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. U.S.A. 97, 7500-7502. https://doi.org/10.1073/pnas.130155097
  71. Mostaghel, E. A. and Nelson, P. S. (2008) Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract. Res. Clin. Endocrinol. Metab. 22, 243-258. https://doi.org/10.1016/j.beem.2008.01.003
  72. Mueller, G. C. and Miller, J. A. (1948) The metabolism of 4-dimethylaminoazobenzene by rat liver homogenates. J. Biol. Chem. 176, 535-544. https://doi.org/10.1016/S0021-9258(19)52671-0
  73. Obach, R. S., Walsky, R. L., Venkatakrishnan, K., Houston, J. B. and Tremaine, L. M. (2005) In vitro cytochrome P450 inhibition data and the prediction of drug-drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin. Pharmacol. Ther. 78, 582-592. https://doi.org/10.1016/j.clpt.2005.09.004
  74. Omura, T. and Sato, R. (1962) A new cytochrome in liver microsomes. J. Biol. Chem. 237, 1375-1376.
  75. Omura, T. and Sato, R. (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370-2378. https://doi.org/10.1016/S0021-9258(20)82244-3
  76. Ortiz de Montellano, P. R. (2015) Cytochrome P450: Structure, Mechanism, and Biochemistry (4th ed.). Springer, New York.
  77. Ortiz de Montellano, P. R., Kunze, K. L., Yost, G. S. and Mico, B. A. (1979) Self-catalyzed destruction of cytochrome P-450: covalent binding of ethynyl sterols to prosthetic heme. Proc. Natl. Acad. Sci. U.S.A. 76, 746-749. https://doi.org/10.1073/pnas.76.2.746
  78. Paine, M. F., Criss, A. B. and Watkins, P. B. (2005) Two major grapefruit juice components differ in time to onset of intestinal CYP3A4 inhibition. J. Pharmacol. Exp. Ther. 312, 1151-1160. https://doi.org/10.1124/jpet.104.076836
  79. Paine, M. F., Shen, D. D. and McCune, J. S. (2018) Recommended approaches for pharmacokinetic natural product-drug interaction research: a NaPDI Center commentary. Drug Metab. Dispos. 46, 1041-1045. https://doi.org/10.1124/dmd.117.079962
  80. Palovaara, S., Kivisto, K. T., Tapanainen, P., Manninen, P., Neuvonen, P. J. and Laine, K. (2000) Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1'-hydroxylation. Br. J. Clin. Pharmacol. 50, 333-337. https://doi.org/10.1046/j.1365-2125.2000.00271.x
  81. Parkinson, A., Ogilvie, B. W., Buckley, D. B., Kazmi, F. and Parkinson, O. (2019) Biotransformation of xenobiotics. In Casarett and Doull's Toxicology: The Basic Science of Poisons (6th ed.) (C. D. Klaassen, ed.), pp. 193-399. McGraw Hill, New York.
  82. Paulsen-Sorman, U. B., Jonsson, K. H. and Lindeke, B. G. A. (1984) Cytochrome P-455 nm complex formation in the metabolism of phenylalkylamines. 8. Stereoselectivity in metabolic intermediary complex formation with a series of chiral 2-substituted 1-phenyl-2-aminoethanes. J. Med. Chem. 27, 342-346. https://doi.org/10.1021/jm00369a018
  83. Petrunak, E. M., DeVore, N. M., Porubsky, P. R. and Scott, E. E. (2014) Structures of human steroidogenic cytochrome P450 17A1 with substrates. J. Biol. Chem. 289, 32952-32964. https://doi.org/10.1074/jbc.M114.610998
  84. Petrunak, E. M., Rogers, S. A., Aube, J. and Scott, E. E. (2017) Structural and functional evaluation of clinically relevant inhibitors of steroidogenic cytochrome P450 17A1. Drug Metab. Dispos. 45, 635-645. https://doi.org/10.1124/dmd.117.075317
  85. Rangno, R. (1997) Terfenadine therapy: can we justify the risks? Can. Med. Assoc. J. 157, 37-38.
  86. Rendic, S. and Guengerich, F. P. (2012) Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol. 25, 1316-1383. https://doi.org/10.1021/tx300132k
  87. Rendic, S. and Guengerich, F. P. (2015) Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol. 28, 38-42. https://doi.org/10.1021/tx500444e
  88. Ryan, K. J. (1959) Biological aromatization of steroids. J. Biol. Chem. 234, 268-272. https://doi.org/10.1016/S0021-9258(18)70286-X
  89. Schmiedlin-Ren, P., Edwards, D. J., Fitzsimmons, M. E., He, K., Lown, K. S., Woster, P. M., Rahman, A., Thummel, K. E., Fisher, J. M., Hollenberg, P. F. and Watkins, P. B. (1997) Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Drug Metab. Dispos. 25, 1228-1233.
  90. Segel, I. H. (1975) Enzyme Kinetics. Wiley, New York.
  91. Sellers, E. M., Kaplan, H. L. and Tyndale, R. F. (2000) Inhibition of cytochrome P450 2A6 increases nicotine's oral bioavailability and decreases smoking. Clin. Pharmacol. Ther. 68, 35-43. https://doi.org/10.1067/mcp.2000.107651
  92. Shinkyo, R. and Guengerich, F. P. (2011) Inhibition of human cytochrome P450 3A4 by cholesterol. J. Biol. Chem. 286, 18426-18433. https://doi.org/10.1074/jbc.M111.240457
  93. Shou, M. and Dai, R. (2008) Analysis of in vitro cytochrome P450 inhibition in drug discovery and development. In Drug Metabolism in Drug Design and Development (D. Zhang, M. Zhu and W. G. Humphreys, Eds.), pp. 513-544. Wiley, Hoboken, NJ.
  94. Silverman, R. B. (1995) Mechanism-based enzyme inactivators. Methods Enzymol. 249, 240-283. https://doi.org/10.1016/0076-6879(95)49038-8
  95. Thompson, D. and Oster, G. (1996) Use of terfenadine and contraindicated drugs. JAMA 275, 1339-1341. https://doi.org/10.1001/jama.1996.03530410053033
  96. Uno, S., Sakurai, K., Nebert, D. W. and Makishima, M. (2014) Protective role of cytochrome P450 1A1 (CYP1A1) against benzo[a] pyrene-induced toxicity in mouse aorta. Toxicology 316, 34-42. https://doi.org/10.1016/j.tox.2013.12.005
  97. Ward, S. and Back, D. J. (1993) Metabolism of gestodene in human liver cytosol and microsomes in vitro. J. Steroid Biochem. Mol. Biol. 46, 235-243. https://doi.org/10.1016/0960-0760(93)90299-C
  98. Williams, R. T. (1947) Detoxication Mechanisms (1st ed.). Wiley, New York.
  99. Woosley, R. L., Chen, Y., Freiman, J. P. and Gillis, R. A. (1993) Mechanism of the cardiotoxic actions of terfenadine. JAMA 269, 1532-1536. https://doi.org/10.1001/jama.1993.03500120070028
  100. Woosley, R. L. (1996) Cardiac actions of antihistamines. Annu. Rev. Pharmacol. Toxicol. 36, 233-252. https://doi.org/10.1146/annurev.pa.36.040196.001313
  101. Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D. and Johnson, E. F. (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05 A resolution. J. Biol. Chem. 279, 38091-38094. https://doi.org/10.1074/jbc.C400293200
  102. Yano, J. K., Denton, T. T., Cerny, M. A., Zhang, X., Johnson, E. F. and Cashman, J. R. (2006) Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J. Med. Chem. 49, 6987-7001. https://doi.org/10.1021/jm060519r
  103. Yin, L. N., Lucas, S., Maurer, F., Kazmaier, U., Hu, Q. Z. and Hartmann, R. W. (2012) Novel imidazol-1-ylmethyl substituted 1,2,5,6-tetra-hydropyrrolo 3,2,1-i,j quinolin-4-ones as potent and selective CYP11B1 inhibitors for the treatment of Cushing's syndrome. J. Med. Chem. 55, 6629-6633. https://doi.org/10.1021/jm3003872
  104. Yu, J. J., Zhou, Z., Tay-Sontheimer, J., Levy, R. H. and RagueneauMajlessi, I. (2018) Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the US Food and Drug Administration between 2013 and 2016. Drug Metab. Dispos. 46, 835-845. https://doi.org/10.1124/dmd.117.078691
  105. Yun, C. H., Okerholm, R. A. and Guengerich, F. P. (1993) Oxidation of the antihistaminic drug terfenadine in human liver microsomes. Role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab. Dispos. 21, 403-409.
  106. Zhang, D., Flint, O., Wang, L., Gupta, A., Westhouse, R. A., Zhao, W., Raghavan, N., Caceres-Cortes, J., Marathe, P., Shen, G., Zhang, Y., Allentoff, A., Josephs, J., Gan, J., Borzilleri, R. and Humphreys, W. G. (2012) Cytochrome P450 11A1 bioactivation of a kinase inhibitor in rats: use of radioprofiling, modulation of metabolism, and adrenocortical cell lines to evaluate adrenal toxicity. Chem. Res. Toxicol. 25, 556-571. https://doi.org/10.1021/tx200524d
  107. Zhu, Y., Wang, F., Li, Q., Zhu, M., Du, A., Tang, W. and Chen, W. (2014) Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab. Dispos. 42, 245-249. https://doi.org/10.1124/dmd.113.055400
  108. Zimmerlin, A., Trunzer, M. and Faller, B. (2011) CYP3A time-dependent inhibition risk assessment validated with 400 reference drugs. Drug Metab. Dispos. 39, 1039-1046. https://doi.org/10.1124/dmd.110.037911