과제정보
This study was supported financially by the Agricultural Animal Breeding Project of Shandong Province (No. 2020LZGC012), Funds of Shandong "Double Tops" Program (No. SYL2017YSTD12), Shandong Modern Pig Technology & Industry System Project (No. SDAIT-08-02), Shandong Provincial Natural Science Foundation (No. ZR2018BC046, ZR2019MC053).
참고문헌
- Fernandez X, Monin G, Talmant A, Mourot J, Lebret B. Influence of intramuscular fat content on the quality of pig Meat-1. Composition of the lipid fraction and sensory characteristics of m. Longissimus lumborum. Meat Sci 1999; 53:59-65. https://doi.org/10.1016/s0309-1740(99)00037-6
- Harper GS, Pethick D, Oddy V, Tume R, Barendse W, Hygate L. Biological determinants of intramuscular fat deposition in beef cattle: current mechanistic knowledge and sources of variation. Sydney, Australia: Meat & Livestock Australia; 2001.
- Guo Y, Huang Y, Hou L, et al. Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet Sel Evol 2017; 21:49. https://doi.org/10.1186/s12711-017-0295-4
- Qiao R, Gao J, Zhang Z, et al. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol 2015;47:17. https://doi.org/10.1186/s12711-015-0089-5
- Ropka Molik K, Zukowski K, Eckert R, Gurgul A, Piorkowska K, Oczkowicz M. Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. Anim Genet 2014;45:674-84. https://doi.org/10.1111/age.12184
- Zhang M, Li F, Sun JW, et al. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR128-3p and miR-27b-3p. Front Genet 2019;10:42. https://doi.org/10.3389/fgene.2019.00042
- Duan L, Min C, Niu Y, et al. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci 2017;13:349-57. https://doi.org/10.7150/ijbs.16635
- Sun Y, Cai R, Wang Y, Zhao R, Qin J, Pang W. A newly identified lncRNA lncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals 2020;10:926. https://doi.org/10.3390/ani10060926
- Wang J, Chen M, Chen J, et al. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Mol Cell Biol 2020;21:77. https://doi.org/10.1186/s12860-020-00324-8
- Kazak L, Rahbani JF, Samborska B, et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 2019;3:360-70. https://doi.org/10.1038/s42255-019-0035-x
- Chen X, Ayala I, Shannon C, et al. The diabetes gene and Wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes 2018;67:554-68. https://doi.org/10.2337/db17-0318
- Zhang X, Zhang Y, Wang P, et al. Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab 2019;30:937-51. https://doi.org/10.1016/j.cmet.2019.09.016
- Chen Q, Zeng Y, Wang H, et al. Molecular characterization and expression analysis of NDUFS4 gene in m. Longissimus dorsi of laiwu pig (sus scrofa). Mol Biol Rep 2013;2:1599-608. https://doi.org/10.1007/s11033-012-2208-5
- Chen W, Fang G, Wang S, Wang H, Zeng Y. Longissimus lumborum muscle transcriptome analysis of laiwu and yorkshire pigs differing in intramuscular fat content. Genes Genomics 2017;39:759-66. https://doi.org/10.1007/s13258-017-0540-9
- Huang Y, Zhou L, Zhang J, Liu X, Huang L. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci 2020;168:108182. https://doi.org/10.1016/j.meatsci.2020.108182
- Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun 2019;10:4667. https://doi.org/10.1038/s41467-019-12266-7
- Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45:D353-61. https://doi.org/10.1093/nar/gkw1092
- Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010;11:R14. https://doi.org/10.1186/gb-2010-11-2-r14
- Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2007;36 (suppl_1):D480-4. https://doi.org/10.1093/nar/gkm882
- Cui JX, Zeng QF, Chen W, Zhang H, Zeng YQ. Analysis and preliminary validation of the molecular mechanism of fat deposition in fatty and lean pigs by high-throughput sequencing. Mamm Genome 2019;30:71-80. https://doi.org/10.1007/s00335-019-09795-3
- Huang W, Zhang X, Li A, Xie L, Miao X. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cell Physiol Biochem 2018;50:2406-22. https://doi.org/10.1159/000495101
- Ansel J, Bottin H, Rodriguez-Beltran C, et al. Cell-to-cell stochastic variation in gene expression is a complex genetic trait. Plos Genet 2008;4:e1000049. https://doi.org/10.1371/journal.pgen.1000049
- Loo L, Lin H, Singh DK, Lyons KM, Altschuler SJ, Wu LF. Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes. J Cell Biol 2009;187:375-84. https://doi.org/10.1083/jcb.200904140
- Herms A, Bosch M, Ariotti N, et al. Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr Biol 2013;23:1489-96. https://doi.org/10.1016/j.cub.2013.06.032
- Cai H, Li M, Jian W, et al. A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing GLRX5 expression. J Cell Mol Med 2020;24:7175-86. https://doi.org/10.1111/jcmm.15181
- Zhang S, Kang Z, Cai H, et al. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. J Cell Physiol 2021;236:601-11. https://doi.org/10.1002/jcp.29887
- Liu W, Ma C, Yang B, Yin C, Zhang B, Xiao Y. LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun 2017;493:1168-75. https://doi.org/10.1016/j.bbrc.2017.09.114
- Wang S, Zhang Q, Zhang Y, et al. Agrimol B suppresses adipogenesis through modulation of SIRT1-PPAR gamma signal pathway. Biochem Biophys Res Commun 2016;477:454-60. https://doi.org/10.1016/j.bbrc.2016.06.078
- Rachid TL, Silva-Veiga FM, Graus-Nunes F, Bringhenti I, Mandarim-De-Lacerda CA, Souza-Mello V. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: a study in the subcutaneous white adipose tissue of obese male mice. Plos One 2018;13:e0191365. https://doi.org/10.1371/journal.pone.0191365
- Song B, Chi Y, Li X, et al. Inhibition of Notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/Akt/mTOR pathway. Cell Physiol Biochem 2015;36:1991-2002. https://doi.org/10.1159/000430167
- Yu X, Shen N, Zhang ML, et al. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J 2011;30:3754-65. https://doi.org/10.1038/emboj.2011.277
- Perez-Mancera PA, Bermejo-Rodriguez C, Gonzalez-Herrero I, et al. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet 2007;16:2972-86. https://doi.org/10.1093/hmg/ddm278
- Tong Q, Dalgin G, Xu H, Ting C, Leiden JM, Hotamisligil GS. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000;290:134-8. https://doi.org/10.1126/science.290.5489.134
- Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS. Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005;25:706-15. https://doi.org/10.1128/MCB.25.2.706-715.2005
- Pan W, Ciociola E, Saraf M, et al. Metabolic consequences of ENPP1 overexpression in adipose tissue. Am J Physiol Endocrinol Metab 2011;301:E901-11. https://doi.org/10.1152/ajpendo.00087.2011
- Hilgendorf KI, Johnson CT, Mezger A, et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 2019;179:1289-305. https://doi.org/10.1016/j.cell.2019.11.005
- Masaki S, Kii I, Sumida Y, et al. Design and synthesis of a potent inhibitor of class 1 DYRK kinases as a suppressor of adipogenesis. Bioorgan Med Chem 2015;23:4434-41. https://doi.org/10.1016/j.bmc.2015.06.018
- Wang P, Xu J, Wang Y, Cao X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 2017;358:1051-5. https://doi.org/10.1126/science.aao0409
- Bortesi L, Zhu C, Zischewski J, et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 2016;14:2203-16. https://doi.org/10.1111/pbi.12634
- China National Commission of Animal Genetic Resources. Animal genetic resources in China: pigs. Beijing, China: Agriculture Press; 2011.