DOI QR코드

DOI QR Code

Comparisons of fatty acid accumulation patterns of two filter feeders, Branchinella kugenumaensis and Daphnia magna in a controlled environment

  • Dongwoo, Yang (Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea) ;
  • Seonah, Jeong (Department of Biological Science, Ajou University) ;
  • Jihee, Kim (Invasive Alien Species Team, National Institute of Ecology) ;
  • Sangkyu, Park (Department of Biological Science, Ajou University)
  • 투고 : 2022.09.14
  • 심사 : 2022.11.15
  • 발행 : 2022.12.31

초록

Background: Filter-feeding zooplankton has limited food resources owing to their habitat. Consequently, it is crucial for them to acquire all essential compounds, such as fatty acids (FAs) and amino acids, from confined diets. To elucidate the trophic transfer of FAs to filter feeders, the primary consumers in freshwater ecosystems, we compared the FA accumulation patterns of two species of filter-feeding zooplankton, Daphnia magna and Branchinella kugenumaensis, in a laboratory experiment. Experimental neonates and nauplii preyed on a single phytoplankton species (Selenastrum capricornutum) for three days after hatching prior to diet switching. Five replicates per feeding group in each species were fed on six different types of mixed phytoplankton diet for 10 days after diet switching. Subsequently, the consumers and diets were harvested and FAs were extracted. Results: Principal component analysis showed that the FA profiles of zooplankton were well-grouped by species and diet. Although diet affects the FA profiles of consumers, they exhibit different FA accumulation patterns. D. magna had a higher 18C-ω3 content and ω3/ω6 ratio than did B. kugenumaensis. In contrast, B. kugenumaensis had higher contents of 18:1ω7 and 20:5ω3 (eicosapentaenoic acid), 22:6ω3 (docosahexaenoic acid), and a higher ratio of ∑18C monounsaturated FAs to ∑18C-ω3 polyunsaturated FAs than did D. magna. Conclusions: This study showed that two primary consumers, D. magna and B. kugenumaensis, fed the same diet had different assimilation patterns of FAs under controlled environments. Specific FA accumulation patterns in filter feeders can provide information on the transfer process of various FAs to high-trophic organisms.

키워드

과제정보

We would like to thank farmers who provide sites to collect zooplankton samples in rice paddy fields, Hongseong-gun, Chungcheongnam-do, Korea.

참고문헌

  1. Bernice R. Biochemical composition of Streptocephalus dichotomus Baird Branchinella kugenumaensis (Ishikawa). Hydrobiologia. 1972;39:155-64. https://doi.org/10.1007/BF00047182.
  2. Brendonck L. Feeding in the fairy shrimp Streptocephalus proboscideus (Frauenfeld) (Branchiopoda: Anostraca). I. Aspects of the feeding biology. J Crustac Biol. 1993;13(2):235-44. https://doi.org/10.1163/193724093X00039.
  3. Brett MT, Muller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR. Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr. 2006;51(5):2428-37. https://doi.org/10.4319/lo.2006.51.5.2428.
  4. Brett MT, Muller-Navarra DC, Persson J. Crustacean zooplankton fatty acid composition. In: Arts MT, Brett MT, Kainz MJ, editors. Lipids in aquatic ecosystems. New York: Springer; 2009. p. 115-46.
  5. Burns CW, Brett MT, Schallenberg M. A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshw Biol. 2011;56(5):889-903. https://doi.org/10.1111/j.1365-2427.2010.02534.x.
  6. Caers M, Coutteau P, Sorgeloos P. Dietary impact of algal and artificial diets, fed at different feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat. Aquaculture. 1999;170(3-4):307-22. https://doi.org/10.1016/S0044-8486(98)00410-4.
  7. Cattell RB. The scree test for the number of factors. Multivariate Behav Res. 1966;1(2):245-76. https://doi.org/10.1207/s15327906mbr0102_10.
  8. Cook HW, McMaster CR. Fatty acid desaturation and chain elongation in eukaryotes. In: Vance D, Vance J, editors. Biochemistry of lipids, lipoproteins and membranes. 4th ed. Amsterdam: Elsevier; 2002. p. 181-204.
  9. Ebert D. Daphnia as a versatile model system in ecology and evolution. Evodevo. 2022;13(1):16. https://doi.org/10.1186/s13227-022-00199-0.
  10. Everitt BS. An R and S-Plus® companion to multivariate analysis. London: Springer; 2005.
  11. Farkas T, Nemecz G, Csengeri I. Differential response of lipid metabolism and membrane physical state by an actively and passively overwintering planktonic crustacean. Lipids. 1984;19:436-42. https://doi.org/10.1007/BF02537405.
  12. Gophen M, Geller W. Filter mesh size and food particle uptake by Daphnia. Oecologia. 1984;64:408-12. https://doi.org/10.1007/BF00379140.
  13. Han MS, Bang HS, Kim MH, Kim MK, Roh KA, Lee JT, et al. The fauna of aquatic invertebrates in paddy field. Korean J Environ Agric. 2007;26(3):267-73. https://doi.org/10.5338/KJEA.2007.26.3.267.
  14. Hessen DO. Filtering structures and particle size selection in coexisting Cladocera. Oecologia. 1985;66:368-72. https://doi.org/10.1007/BF00378300.
  15. Jassby AD. Uncovering mechanisms of interannual variability from short ecological time series. In: Scow K, Fogg G, Hinton D, Johnson M, editors. Integrated assessment of ecological health. Boca Raton: CRC Press; 2000. p. 285-306.
  16. Jeong H, Kotov AA, Lee W. Checklist of the freshwater Cladocera (Crustacea: Branchiopoda) of South Korea. Proc Biol Soc Wash. 2014; 127(1):216-28. https://doi.org/10.2988/0006-324X-127.1.216.
  17. Kainz M, Arts MT, Mazumder A. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol Oceanogr. 2004;49(5):1784-93. https://doi.org/10.4319/lo.2004.49.5.1784.
  18. Kainz MJ, Perga ME, Arts MT, Mazumder A. Essential fatty acid concentrations of different seston sizes and zooplankton: a field study of monomictic coastal lakes. J Plankton Res. 2009;31(6):635-45. https://doi.org/10.1093/plankt/fbp015.
  19. Kattner G, Fricke HSG. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr A. 1986;361:263-8. https://doi.org/10.1016/S0021-9673(01)86914-4.
  20. King JL, Simovich MA, Brusca RC. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia. 1996;328:85-116. https://doi.org/10.1007/BF00018707.
  21. Lindstrom K. Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia. 1983;101:35-47. https://doi.org/10.1007/BF00008655.
  22. Lukic D, Ptacnik R, Vad CF, Pόda C, Horvath Z. Environmental constraint of intraguild predation: inorganic turbidity modulates omnivory in fairy shrimps. Freshw Biol. 2020;65(2):226-39. https://doi.org/10.1111/fwb.13416.
  23. Masclaux H, Bec A, Kainz MJ, Perriere F, Desvilettes C, Bourdier G. Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshw Biol. 2012;57(4):696-703. https://doi.org/10.1111/j.1365-2427.2012.02735.x.
  24. Mevik BH, Wehrens R. The pls package: principal component and partial least squares regression in R. J Stat Softw. 2007;18(2):1-23. https:// doi.org/10.18637/jss.v018.i02.
  25. Moriya H. Notes on a fairy shrimp, Eubranchipus uchidai (Kikuchi) (Anostraca), from Japan. Hydrobiologia. 1985;120:97-101. https://doi.org/10.1007/BF00032129.
  26. Muller-Navarra D, Brett M, Liston A, Goldman CR. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature. 2000;403:74-7. https://doi.org/10.1038/47469.
  27. Muller-Navarra DC. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: does it contradict? Arch fur Hydrobiol. 2006;167(1-4):501-13. https://doi.org/10.1127/0003-9136/2006/0167-0501.
  28. Muller-Navarra DC. Food web paradigms: the biochemical view on trophic interactions. Int Rev Hydrobiol. 2008;93(4-5):489-505. https://doi.org/10.1002/iroh.200711046.
  29. Mura G, Venanzi P, Avalle V, Quaglia GB. Fatty acid and amino acid composition of two fairy shrimp species (Crustacea, Anostraca) from Italy: Chirocephalus diaphanus and Chirocephalus kerkyrensis. Hydrobiologia. 1994;286:149-54. https://doi.org/10.1007/BF00006246.
  30. Mura G, Ferrara F, Delise M, Fabietti F, Bocca A. Evaluation of the fatty acid profiles of two fairy shrimp species, Branchipus pasai Cottarelli, 1969 and Chirocephalus kerkyrensis Pesta, 1936 (Crustacea, Anostraca) fed different diets. In: Simovich MA, Sassaman C, Belk D, editors. Studies on large branchiopod biology and conservation. Dordrecht: Springer; 1997a. p. 229-35.
  31. Mura G, Ferrara F, Fabietti F, Delise M, Bocca A. Biochemical (fatty acid profile) diversity in anostracan species of the genus Chirocephalus Prevost. In: Simovich MA, Sassaman C, Belk D, editors. Studies on large branchiopod biology and conservation. Dordrecht: Springer; 1997b. p. 237-41.
  32. Mura G, Ferrara F, Fabietti F, Delise M, Bocca A. Intraspecific variation of fatty acid profile in wild populations of Chirocephalus diaphanus Prevost (Anostraca). Crustaceana. 1998;71(7):785-800. https://doi.org/10.1163/156854098X00040
  33. Mura G, Zarattini P, Delise M, Fabietti F, Bocca A. Seasonal variation of the fatty acid profile in cysts and wild adults of the fairy shrimp Chirocephalus kerkyrensis Pesta, 1936 (Anostraca). Crustaceana. 2000; 73(4):479-95. https://doi.org/10.1163/156854000504453
  34. Overland JE, Preisendorfer RW. A significance test for principal components applied to a cyclone climatology. Mon Weather Rev. 1982; 110(1):1-4. https://doi.org/10.1175/1520-0493(1982)110%3C0001:ASTFPC%3E2.0.CO;2.
  35. Persson J, Vrede T. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw Biol. 2006;51(5):887-900. https://doi.org/10.1111/j.1365-2427.2006.01540.x.
  36. Poerschmann J, Spijkerman E, Langer U. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol. 2004;48(1):78-89. https://doi.org/10.1007/s00248-003-0144-6.
  37. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/. Accessed 1 May 2018.
  38. Ravet JL, Brett MT, Arhonditsis GB. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology. 2010;91(1):180-90. https://doi.org/10.1890/08-2037.1.
  39. Rogers DC, Quinney DL, Weaver J, Olesen J. A new giant species of predatory fairy shrimp from Idaho, USA (Branchiopoda: Anostraca). J Crustac Biol. 2006;26(1):1-12. https://doi.org/10.1651/C-2509.1.
  40. Selvarani BJ. Food preference of fairy shrimp Streptocephalus dichotomus (Baird) Crustacea: anostraca. J Appl Biosci. 2009;16:840-4.
  41. Smyntek PM, Teece MA, Schulz KL, Storch AJ. Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshw Biol. 2008;53(9):1768-82. https://doi.org/10.1111/j.1365-2427.2008.02001.x.
  42. Taipale SJ, Kainz MJ, Brett MT. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos. 2011;120(11):1674-82. https://doi.org/10.1111/j.1600-0706.2011.19415.x.
  43. Termonia P. On the removal of random variables in data sets of meteorological observations. Meteorol Atmos Phys. 2001;78:143-56. https://doi.org/10.1007/s703-001-8170-6
  44. Van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. https://doi.org/10.1186/1471-2164-7-142.
  45. Von Elert E. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol Oceanogr. 2002;47(6):1764-73. https://doi.org/10.4319/lo.2002.47.6.1764.
  46. Wacker A, von Elert E. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology. 2001; 82(9):2507-20. https://doi.org/10.1890/0012-9658(2001)082[2507:PFAEFN]2.0.CO;2.
  47. Weers P, Siewertsen K, Gulati R. Is the fatty acid composition of Daphnia galeata determined by the fatty acid composition of the ingested diet? Freshw Biol. 1997;38(3):731-8. https://doi.org/10.1046/j.1365-2427.1997.00238.x.
  48. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80(1):115-22. https://doi.org/10.1021/ac0713510.
  49. Wiman FH. Mating behavior in the Streptocephalus fairy shrimps (Crustacea: Anostraca). Southwest Nat. 1981;25(4):541-6. https://doi.org/10.2307/3670855.
  50. Yang D, Nam S, Hwang SJ, An KG, Park YS, Shin KH, et al. Fatty acid biomarkers to verify cyanobacteria feeding abilities of herbivorous consumers. J Freshw Ecol. 2016;31(1):77-91. https://doi.org/10.1080/02705060.2015.1025304.
  51. Yang D, Park S. Freshwater anostracan, Branchinella kugenumaensis, as a potential controlling consumer species on toxic cyanobacteria Microcystis aeruginosa. Aquat Ecol. 2017;51:449-61. https://doi.org/10.1007/s10452-017-9628-1.
  52. Zhukova NV, Imbs AB, Yi LF. Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comp Biochem Physiol B Biochem Mol Biol. 1998;120(3):499-506. https://doi.org/10.1016/S0305-0491(98)10036-6.