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BOUNDEDNESS AND CONTINUITY FOR VARIATION

OPERATORS ON THE TRIEBEL–LIZORKIN SPACES

Feng Liu, Yongming Wen, and Xiao Zhang

Abstract. In this paper, we establish the boundedness and continuity

for variation operators for θ-type Calderón–Zygmund singular integrals
and their commutators on the Triebel–Lizorkin spaces. As applications,

we obtain the corresponding results for the Hilbert transform, the Hermit
Riesz transform, Riesz transforms and rough singular integrals as well as

their commutators.

1. Introduction

The primary purpose of this paper is to establish the boundedness and con-
tinuity for variation operators for θ-type Calderón–Zygmund singular integrals
and their commutators on the Triebel–Lizorkin spaces. We now recall some def-
initions and background. Let T = {Tε}ε>0 be a family of bounded operators
satisfying

lim
ε→0

Tεf(x) = Tf(x)

almost everywhere for a certain class of functions f . For ρ > 2, the ρ-variation
operator of T is defined by

Vρ(T )(f)(x) = sup
{εi}↘0

( ∞∑
i=1

|Tεif(x)− Tεi+1f(x)|ρ
)1/ρ

,

where the supremum runs over all sequences {εi} of positive numbers decreasing
to zero.
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We say that TK is a θ-type Calderón–Zygmund operator on Rn if TK is
bounded on L2(Rn) and it admits the following representation

TKf(x) =

∫
Rn
K(x, y)f(y)dy for x /∈ suppf

with kernel K satisfying the size condition

|K(x, y)| ≤ CK
|x− y|n

and a smoothness condition

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ θ
( |x− z|
|x− y|

) 1

|x− y|n

for all |x − y| > 2|x − z|, where θ : [0, 1] → [0,∞) is a modulus of continuity,
that is, θ is a continuous, increasing, subadditive function with θ(0) = 0 and
satisfies the following Dini condition:∫ 1

0

θ(t)
dt

t
<∞.

This type of operator TK was studied by Lacy [11] and Lerner [13] who proved
that TK is bounded on the weighted Lebesgue space Lp(w) for 1 < p <∞ and
w ∈ Ap(Rn). When θ(t) = tδ for some δ > 0, the operator TK is the classical
Calderón–Zygmund singular integral operator.

Formally, the operator TK can be rewritten as

TK(f)(x) = lim
ε→0+

TK,ε(f)(x),

where TK,ε is the truncated singular integral operator, i.e.,

TK,ε(f)(x) =

∫
|x−y|>ε

K(x, y)f(y)dy.

The commutator of TK with a suitable function b is defined as

TK,b(f)(x) := [b, TK ](f)(x) =

∫
Rn

(b(x)− b(y))K(x, y)f(y)dy

= lim
ε→0+

TK,b,ε(f)(x),

where

TK,b,ε(f)(x) :=

∫
|x−y|>ε

(b(x)− b(y))K(x, y)f(y)dy.

Denote T 1
K,b = TK,b. For m ≥ 2, the m-th iterated commutator TmK,b is defined

by

TmK,b(f)(x) := [b, Tm−1
K,b ](f)(x) =

∫
Rn

(b(x)− b(y))mK(x, y)f(y)dy

=: lim
ε→0+

TmK,b,ε(f)(x),
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where

TmK,b,ε(f)(x) :=

∫
|x−y|>ε

(b(x)− b(y))mK(x, y)f(y)dy.

Let T := {TK,ε}ε>0 and T mK,b := {TmK,b,ε}ε>0. The ρ-variation operator for the
families of operators T and T mK,b are defined, respectively, by

(1.1) Vρ(TK)(f)(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

K(x, y)f(y)dy
∣∣∣ρ)1/ρ

,

(1.2)

Vρ(T mK,b)(f)(x)

:= sup
εi↘0

( ∞∑
i=1

∣∣∣ ∫
εi+1<|x−y|≤εi

(b(x)− b(y))mK(x, y)f(y)dy
∣∣∣ρ)1/ρ

,

where the above supremums are taken over all sequences {εi} decreasing to
zero.

It should be pointed out that TK and TmK,b have some classical models, which
are listed as follows:
• When n = 1 and K(x, y) = 1

x−y , then TK (resp., TmK,b) is (resp., the m-th

order commutator of) Hilbert transform. We denote TK = H and T mK,b = Hmb
for m ≥ 1.
• When n = 1 and K(x, y) = R±(x, y), where R±(x, y) is a Hermit Riesz

kernel whose expression can be found in [21], then TK (resp., TmK,b) is (resp.,

the m-th order commutator of) Hermit Riesz transform. We denote TK = R±
and T mK,b = Rm±,b for m ≥ 1.

• When n ≥ 2 and K(x, y) = Rj(x, y), where

Rj(x, y) := Γ
(n+ 1

2

)
π−

n+1
2

xj − yj
|x− y|n+1

for 1 ≤ j ≤ n, then TK (resp., TmK,b) is (resp., the m-th order commutator of)
Riesz transform. We denote TK = Rj and T mK,b = Rmj,b for m ≥ 1.

• When n ≥ 2 and K(x, y) = Ω(x−y)
|x−y|n , where Ω ∈ L1(Sn−1) is homogeneous

of zero and satisfies
∫

Sn−1 Ω(θ)dσ(θ) = 0, then TK (resp., TmK,b) is just the usual

(resp., the m-th order commutator of) singular integral operator with rough
kernel Ω. We denote TK = TΩ and T mK,b = T mΩ,b for m ≥ 1.

The variation inequalities for various operators have been an active topic of
current research. This program began with Lépingle [12] who established the
first variational inequality for general martingales (see also [20] for a simple
proof). Later on, similar variation estimates were obtained by Bourgain [3] for
the ergodic averages of a dynamic system. Motivated by the work [3], more
and more scholars were devoted to studying variational inequalities for various
operators. For the ρ-variation operators of the Calderón–Zygmund singular
integrals and their commutators, we can consult [5,18,19] for the boundedness
on the weighted Lebesgue spaces, [15,28] for the boundedness on the weighted
Morrey spaces, [15] for the boundedness on the Sobolev spaces and [27] for
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the boundedness and continuity on the Besov spaces. Recently, Wen, Wu and
Zhang [23] established the boundedness of ρ-variation operators of the θ-type
Calderón–Zygmund singular integrals on the weighted Lebesgue spaces. More
precisely, it follows from [23, Theorem 1.1] that:

Theorem A ([23]). Let ρ > 2, K be a θ-type Calderón–Zygmund kernel and
Vρ(TK) be given as in (1.1). If Vρ(TK) is of type (p0, p0) for some p0 ∈ (1,∞),
then Vρ(TK) is bounded on Lp(w) for all 1 < p <∞ and w ∈ Ap(Rn).

On the other hand, the Triebel–Lizorkin spaces contain many important
function spaces, such as Lebesgue spaces, Hardy spaces, Sobolev spaces and
Lipschitz spaces. Over the last several years, a considerable amount of attention
has been given to study the boundedness for various operators on the above
function spaces. For examples, see [2, 4, 6] for singular integrals, [17, 26] for
maximal singular integrals, [2, 24, 25] for Marcinkiewicz integrals and [10, 16]
for maximal operators. Let s ∈ R, 0 < p, q ≤ ∞ (p 6= ∞). The homogeneous

Triebel–Lizorkin spaces Ḟ p,qs (Rn) are defined by

(1.3) Ḟ p,qs (Rn) :=
{
f ∈ S ′(Rn) : ‖f‖Ḟp,qs (Rn) <∞

}
,

where

‖f‖Ḟp,qs (Rn) =
∥∥∥(∑

i∈Z
2−isq|Ψi ∗ f |q

)1/q∥∥∥
Lp(Rn)

,

S ′(Rn) denotes the tempered distribution class on Rn, Ψ̂i(ξ) = φ(2iξ) for i ∈ Z
and φ ∈ C∞c (Rn) satisfies the conditions: 0 ≤ φ(x) ≤ 1; supp(φ) ⊂ {x : 1/2 ≤
|x| ≤ 2}; φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. The inhomogeneous versions of
Triebel–Lizorkin spaces denoted by F p,qα (Rn) are obtained by adding the term
‖Φ ∗ f‖Lp(Rn) to the right hand side of (1.3) with

∑
i∈Z replaced by

∑
i≥1,

where Φ ∈ S(Rn) (the space of Schwartz functions), supp(Φ̂) ⊂ {ξ : |ξ| ≤ 2},
Φ̂(x) > c > 0 if |x| ≤ 5/3. The following properties are well known (see [8,9,22],
for example): for 1 < p, q <∞ and α > 0,

(1.4)

Ḟ p,20 (Rn) = Lp(Rn),

F p,qs (Rn) ∼ Ḟ p,qs (Rn)
⋂
Lp(Rn) and

‖f‖Fp,qs (Rn) ' ‖f‖Ḟp,qs (Rn) + ‖f‖Lp(Rn).

It is natural to ask whether the variation operator Vρ(TK) is bounded on
the Triebel–Lizorkin spaces. This is the main motivation of this paper. In this
paper we shall establish the following result.

Theorem 1.1. Let ρ > 2, K be a θ-type Calderón–Zygmund kernel and Vρ(TK)
be given as in (1.1). Assume that K(x, y) = K(x− y) and Vρ(TK) is bounded
on Lp0(Rn) for some p0 ∈ (1,∞). Then for 0 < s < 1 and 1 < p, q < ∞, the
map Vρ(TK) : F p,qs (Rn)→ F p,qs (Rn) is bounded and continuous.
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In order to establish the corresponding results for commutators, let us in-
troduce the following definition. Let 0 < γ ≤ 1. The homogeneous Lipschitz
space Lipγ(Rn) is defined as

Lipγ(Rn) := {f : Rn → C continuous : ‖f‖Lipγ(Rn) <∞},

where

‖f‖Lipγ(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

|f(x+ h)− f(x)|
|h|γ

<∞.

The inhomogeneous Lipschitz space Lipγ(Rn) is given by

Lipγ(Rn) := {f : Rn → C continuous : ‖f‖Lipγ(Rn) <∞},

where

‖f‖Lipγ(Rn) := ‖f‖L∞(Rn) + ‖f‖Lipγ(Rn) <∞.
The second result of this paper can be listed as follows:

Theorem 1.2. Let ρ > 2, m ≥ 1, 0 < γ ≤ 1 and b ∈ Lipγ(Rn). Let Vρ(TK)
and Vρ(T mK,b) be defined as in (1.1) and (1.2), respectively, where K is a θ-

type Calderón–Zygmund kernel. Assume that K(x, y) = K(x− y) and Vρ(TK)
is bounded on Lp0(Rn) for some p0 ∈ (1,∞). Then for any 0 < s < γ and
1 < p, q < ∞, the map Vρ(T mK,b) : F p,qs (Rn) → F p,qs (Rn) is bounded and
continuous. Particularly, there exists a constant C > 0 independent of b such
that

‖Vρ(T mK,b)(f)‖Fp,qs (Rn) ≤ C‖b‖mLipγ(Rn)‖f‖Fp,qs (Rn), ∀f ∈ F p,qs (Rn).

As applications of Theorems 1.1 and 1.2, we have:

Corollary 1.3. Let ρ > 2. Assume that one of the following conditions holds:
(i) n = 1 and T = H;
(ii) n = 1 and T = R±;
(iii) T = Rj, 1 ≤ j ≤ n;
(iv) T = TΩ, where Ω ∈ Lipα(Sn−1) for some α > 0.

Then for any 0 < s < 1 and 1 < p, q < ∞, the map Vρ(T ) : F p,qs (Rn) →
F p,qs (Rn) is bounded and continuous.

Corollary 1.4. Let m ≥ 1, ρ > 2, 0 < γ ≤ 1 and b ∈ Lipγ(Rn). Assume that
one of the following conditions holds:

(i) n = 1 and T = Hmb ;
(ii) n = 1 and T = Rm±,b;
(iii) T = Rmj,b, 1 ≤ j ≤ n;

(iv) T = T mΩ,b, where Ω ∈ Lipα(Sn−1) for some α > 0.

Then for 0 < s < γ and 1 < p, q <∞, the map Vρ(T ) : F p,qs (Rn)→ F p,qs (Rn)
is bounded and continuous. Moreover,

‖Vρ(T )(f)‖Fp,qs (Rn) ≤ C‖b‖mLipγ(Rn)‖f‖Fp,qs (Rn), ∀f ∈ F p,qs (Rn).
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Throughout this paper, we always assume that ρ > 2 since the ρ-variation
in the case ρ ≤ 2 is often not bounded (see [1, 3]). The letter C, sometimes
with additional parameters, will stand for positive constants, not necessarily
the same at each occurrence but independent of the essential variables. For a
cube Q and a function f defined on Rn, we set

fQ =
1

|Q|

∫
Q

f(x)dx.

In what follows, we denote by MHL the centered Hardy–Littlewood maximal
operator defined on Rn. We set Rn = {ξ ∈ Rn : 1/2 < |ξ| ≤ 1}. For an
arbitrary function f defined on Rn and x, ζ ∈ Rn, we denote f(x+ ζ) = fζ(x).
We denote by ∆ζ the difference of f , i.e., ∆ζf(x) = fζ(x)− f(x).

2. Preliminaries

2.1. Weights

A weight is a nonnegative, locally integrable function on Rn that takes values
in (0,∞) almost everywhere. For 1 < p < ∞, a weight w is said to be in the
Muckenhoupt weight class Ap(Rn) if there exists a positive constant C such
that

(2.1) sup
Q cubes in Rn

( 1

|Q|

∫
Q

w(x)dx
)( 1

|Q|

∫
Q

w(x)1−p′dx
)p−1

≤ C.

The smallest constant C in inequality (2.1) is the corresponding Ap constant
of w, which is denoted by [w]Ap . A weight w is said to be in the Muckenhoupt
weight class A1(Rn) if

MHL(w)(x) ≤ Cw(x)

for almost all x ∈ Rn, where the smallest constant C is denoted by [w]A1
. A

weight w is said to be in the Muckenhoupt weight class A∞(Rn) if

[w]A∞ := sup
Q cubes in Rn

1

w(Q)

∫
Q

MHL(wχQ)(x)dx <∞.

It was known that A∞(Rn) =
⋃

1≤p<∞Ap(Rn).

2.2. Sparse family

We now introduce some facts about sparse family, which follows from [23].
Given a cube Q ⊂ Rn, let D(Q) be the set of cubes obtained by repeatedly
subdividing Q and its descendants into 2n congruent subcubes. A collection of
cubes D is said to be a dyadic lattice if it satisfies the following properties:

(a) if Q ∈ D, then every child of Q is also in D;
(b) for every two cubes Q1, Q2 ∈ D, there is a common ancestor Q ∈ D such

that Q1, Q2 ∈ D(Q);
(c) for any compact set K ⊂ Rn, there is a cube Q ∈ D such that K ⊂ Q.
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A subset S ⊂ D is said to be an η-sparse family with η ∈ (0, 1) if for every
cube Q ∈ S, there is a measurable subset EQ ⊂ Q such that η|Q| ≤ |EQ|, and
the sets {EQ}Q∈S are mutually disjoint.

The following sparse domination is the main ingredient of proving Theorem
1.1, which follows from [23].

Lemma 2.1 ([23]). Let ρ > 2, K be a θ-type Calderón–Zygmund kernel and
Vρ(TK) be defined in (1.1). If Vρ(TK) is bounded on Lp0(Rn) for some p0 ∈
(1,∞), there exist 3n dyadic lattices Dj and 1

2·9n -sparse families Sj ⊂ Dj such
that for almost every x ∈ Rn,

Vρ(TKf)(x) ≤ C
3n∑
j=1

∑
Q∈Sj

|f |QχQ(x).

2.3. Some vector-valued inequalities

To proving Theorem 1.1, the following vector-valued inequalities are needed.

Lemma 2.2 ([24]). For any 1 < p, q <∞ and 1 ≤ r < min{p, q}, we have∥∥∥(∑
k∈Z
‖MHL(fk,ζ)‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ C
∥∥∥(∑

k∈Z
‖fk,ζ‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

.

Lemma 2.3 ([7]). Given a family F , suppose that for some p0 ∈ (0,∞) and
every w ∈ A∞(Rn),∫

Rn
f(x)p0w(x)dx ≤ c

∫
Rn
g(x)p0w(x)dx

for all (f, g) ∈ F such that the left hand side is finite, and where c > 0 depends
only on the A∞(Rn) constant of w. Then for all 0 < p, q <∞,∥∥∥(∑

j∈Z
(fj)

q
)1/q∥∥∥

Lp(w)
≤ C

∥∥∥(∑
j∈Z

(gj)
q
)1/q∥∥∥

Lp(w)
, ∀{(fj , gj)}j∈Z ⊂ F .

Applying Lemmas 2.1–2.3, one can get the following vector-valued inequali-
ties for the ρ-variation operator of θ-type Calderón–Zygmund singular integrals,
which is the main ingredient of proving Theorem 1.1.

Proposition 2.4. Let ρ > 2, K be a θ-type Calderón–Zygmund kernel and
Vρ(TK) be defined in (1.1). If Vρ(TK) is bounded on Lp0(Rn) for some p0 ∈
(1,∞), then for 1 < p, q <∞, we have

(2.2)

∥∥∥(∑
k∈Z
‖Vρ(TK)(fk,ζ)‖qL1(Rn)

)1/q∥∥∥
Lp(Rn)

≤ C
∥∥∥(∑

k∈Z
‖fk,ζ‖qL1(Rn)

)1/q∥∥∥
Lp(Rn)

for all {fk,ζ(·)}k∈Z ∈ Lp(`q(L1(Rn)),Rn).
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Proof. Firstly we shall prove

(2.3)

∫
Rn

∫
Rn

Vρ(TK)(fζ)(x)dζw(x)dx ≤ C
∫
Rn

∫
Rn

MHL(fζ)(x)dζw(x)dx.

Fix 1 ≤ j ≤ 3n, noting that Sj is a 1
2·9n -sparse family, then for any Q ∈ Sj ,

we have that |Q \ EQ| ≤ (1 − 1
2·9n )|Q|. Let w ∈ A∞(Rn). Then there exists

β ∈ (0, 1) such that w(Q \ EQ) ≤ βw(Q). This yields that

w(EQ) = w(Q)− w(Q \ EQ) ≥ (1− β)w(Q).

Invoking Lemma 2.1, we have∫
Rn

∫
Rn

Vρ(TK)(fζ)(x)dζw(x)dx

≤ C

∫
Rn

∫
Rn

3n∑
j=1

∑
Q∈Sj

|fζ |Q(x)χQ(x)dζw(x)dx

≤ C

3n∑
j=1

∑
Q∈Sj

∫
Rn

inf
x∈Q

MHL(fζ)(x)dζw(Q)

≤ C

3n∑
j=1

∑
Q∈Sj

∫
Rn

inf
x∈Q

MHL(fζ)(x)dζw(EQ)

≤ C

3n∑
j=1

∑
Q∈Sj

∫
EQ

∫
Rn

MHL(fζ)(x)dζw(x)dx

≤ C

∫
Rn

∫
Rn

MHL(fζ)(x)dζw(x)dx.

This proves (2.3).
For R > 0, we set

FR(fζ)(x) = min
{∫

Rn

Vρ(TK)(fζ)(x)dζ,R
}
χB(0,R)(x).

Note that ‖FR(fζ)‖L1(w) ≤ Rw(B(0, R)) <∞, applying Lemma 2.3 and (2.3),
we obtain∥∥∥(∑

k∈Z
(FR(fk,ζ))

q
)1/q∥∥∥

Lp(w)
≤ C

∥∥∥(∑
k∈Z
‖MHL(fk,ζ)‖qL1(Rn)

)1/q∥∥∥
Lp(w)

.

From this and Lemma 2.2, we have∥∥∥(∑
k∈Z
‖Vρ(TK)(fk,ζ)‖qL1(Rn)

)1/q∥∥∥
Lp(w)

=
∥∥∥(∑

k∈Z
( lim
R→∞

FR(fk,ζ))
q
)1/q∥∥∥

Lp(w)
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=
∥∥∥( lim

R→∞

∑
k∈Z

(FR(fk,ζ))
q
)1/q∥∥∥

Lp(w)

≤ lim inf
R→∞

∥∥∥(∑
k∈Z

(FR(fk,ζ))
q
)1/q∥∥∥

Lp(w)

≤ C
∥∥∥(∑

k∈Z
‖MHL(fk,ζ)‖qL1(Rn)

)1/q∥∥∥
Lp(w)

≤ C
∥∥∥(∑

k∈Z
‖fk,ζ‖qL1(Rn)

)1/q∥∥∥
Lp(w)

,

which gives (2.2) by taking w ≡ 1. �

2.4. A criterion

We now end this section by presenting a criterion of continuity for several
sublinear operators on the Triebel–Lizorkin spaces.

Proposition 2.5. ([14]). Assume that T is a sublinear operator and the fol-
lowing conditions hold:

(i) T : Lp(Rn)→ Lp(Rn) for some p ∈ (1,∞);
(ii) For all x, ζ ∈ Rn, it holds that

|∆ζ(Tf)(x)| ≤ |T (∆ζ(f))(x)|;

(iii) There exist α ∈ (0, 1) and q ∈ (1,∞) such that∥∥∥(∑
l∈Z

2lqα
(∫

Rn

|T (∆2−lζf)|dζ
)q)1/q∥∥∥

Lp(Rn)
≤ C‖f‖Ḟp,qα (Rn).

Then T is continuous from F p,qs (Rn) to Ḟ p,qs (Rn).

3. Proofs of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1 and 1.2. Before presenting our proofs,
let us introduce some properties for the Triebel–Lizorkin spaces, which play key
roles in the main proofs. Let 0 < s < 1, 1 < p, q < ∞ and 1 ≤ r < min(p, q).
For a measurable function g : Rn × Z×Rn → R, we define

‖g‖p,q,r :=
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|g(x, k, ζ)|rdζ
)q/r)1/q∥∥∥

Lp(Rn)
.

In [24], Yabuta observed that if 0 < s < 1, 1 < p < ∞, 1 < q ≤ ∞ and
1 ≤ r < min(p, q), then

(3.1) ‖f‖Ḟp,qs (Rn) ' ‖∆2−kζf‖p,q,r.



1548 F. LIU, Y. WEN, AND X. ZHANG

Proof of Theorem 1.1. For any x, h ∈ Rn, it is clear that Vρ(TK)(f)(x+ h) =
Vρ(TK)(fh)(x). By the sublinearity of Vρ(TK), one has

(3.2)
|∆ζ(Vρ(TK)(f))(x)| = |Vρ(TK)(f)(x+ h)− Vρ(TK)(f)(x)|

≤ |Vρ(TK)(∆h(f))(x)|.

By Proposition 2.4, we get from (3.1) and (3.2) that

(3.3)

‖Vρ(TK)(f)‖Ḟp,qs (Rn)

≤ C
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζ(Vρ(TK)(f))|rdζ
)q/r)1/q∥∥∥

Lp(Rn)

≤ C
∥∥∥(∑

k∈Z

(∫
Rn

|Vρ(TK)(2ks∆2−kζ(f))|rdζ
)q/r)1/q∥∥∥

Lp(Rn)

≤ C
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζf |rdζ
)q/r)1/q∥∥∥

Lp(Rn)

≤ C‖f‖Ḟp,qs (Rn).

Combining (3.3) with Theorem A and (1.4) yield the boundedness of Vρ(TK) on
F p,qs (Rn). By Propositions 2.4 and 2.5, Theorem A, (1.4), (3.2) and (3.3), one

can get the continuity of Vρ(TK) : F p,qs (Rn) → Ḟ p,qs (Rn). This together with
the Lp continuity for Vρ(TK) leads to the continuity of Vρ(TK) on F p,qs (Rn). �

Proof of Theorem 1.2. The proof of Theorem 1.2 will be divided into two steps:
Step 1. Proof of the boundedness part. It was shown in [15] (see

[15, (5.16)]) that

(3.4)

|∆h((Vρ(T mK,b)(f))(x)| ≤
m∑
l=0

clm|bm−lh (x)|Vρ(TK)(blh∆hf)(x)

+

m∑
l=1

clm

l∑
`=0

c`l |∆hb(x)|`
m−l∑
µ=0

cµm−l|b
m−l−µ(x)|

× Vρ(TK)(bµ(∆hb)
l−`f)(x)

=: G(f)(h, x)

for any x, h ∈ Rn. Here CrN = N !
r!(N−r)! for any r, N ∈ N with r ≤ N . By (3.1),

(3.4) and Minkowski’s inequality, we have

‖Vρ(T mK,b)(f)‖Ḟp,qs (Rn)

≤ C
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζ(Vρ(T mK,b)(f))|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

G(f)(2−kζ, x)dζ
)q)1/q∥∥∥

Lp(Rn)
(3.5)
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≤ C

m∑
l=0

clm

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|bm−l
2−kζ
|Vρ(TK)(bl2−kζ∆2−kζf)dζ

)q)1/q∥∥∥
Lp(Rn)

+

m∑
l=1

clm

l∑
`=0

c`l

∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|∆2−kζb|`

×
m−l∑
µ=0

cµm−l|b
m−l−µ|Vρ(TK)(bµ(∆2−kζb)

l−`f)dζ
)q)1/q∥∥∥

Lp(Rn)

=: A1 +A2.

By Proposition 2.4 and (3.1), one has

(3.6)

A1 ≤
m∑
l=0

clm‖b‖m−lL∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

Vρ(TK)(bl2−kζ∆2−kζf)dζ
)q)1/q∥∥∥

Lp(Rn)

=

m∑
l=0

clm‖b‖m−lL∞(Rn)

×
∥∥∥(∑

k∈Z

(∫
Rn

Vρ(TK)(2ksbl2−kζ∆2−kζf)dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C

m∑
l=0

clm‖b‖m−lL∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|bl2−kζ∆2−kζf)|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C

m∑
l=0

clm‖b‖mL∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζf)|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C‖b‖mL∞(Rn)‖f‖Ḟp,qs (Rn).

By the Lp bounds for Vρ(TK),

A2 ≤
m∑
l=1

clm

m−l∑
µ=0

cµm−l‖b‖
m−l−µ
L∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

Vρ(TK)(bµ(∆2−kζb)
lf)dζ

)q)1/q∥∥∥
Lp(Rn)

(3.7)
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+

m∑
l=1

clm

l∑
`=1

c`l

m−l∑
µ=0

cµm−l‖b‖
m−l−µ
L∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζb|`Vρ(TK)(bµ(∆2−kζb)
l−`f)dζ

)q)1/q∥∥∥
Lp(Rn)

=: A2,1 +A2,2.

Fix 1 ≤ l ≤ m and 0 ≤ µ ≤ m− l, noting that s < γ, we then use Proposition
2.4 to obtain that∥∥∥(∑

k∈Z
2ksq

(∫
Rn

Vρ(TK)(bµ(∆2−kζb)
lf)dζ

)q)1/q∥∥∥
Lp(Rn)

=
∥∥∥(∑

k∈Z

(∫
Rn

Vρ(TK)(2ksbµ(∆2−kζb)
lf)dζ

)q)1/q∥∥∥
Lp(Rn)

≤ C‖b‖µL∞(Rn)

∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|(∆2−kζb)
lf |dζ

)q)1/q∥∥∥
Lp(Rn)

≤ C‖b‖µL∞(Rn)|Rn|

×
∥∥∥( ∞∑

k=1

2k(s−lγ)q‖b‖lqLipγ(Rn) + 2lq‖b‖lqL∞(Rn)

0∑
k=−∞

2ksq
)1/q

f
∥∥∥
Lp(Rn)

≤ C‖b‖µL∞(Rn)‖b‖
l
Lipγ(Rn)‖f‖Lp(Rn).

It follows that

(3.8) A2,1 ≤ C‖b‖mLipγ(Rn)‖f‖Lp(Rn).

For A2,2, we write

A2,2 ≤
m∑
l=1

clm

l−1∑
`=1

c`l

m−l∑
µ=0

cµm−l‖b‖
m−l−µ
L∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζb|`

× Vρ(TK)(bµ(∆2−kζb)
l−`f)dζ

)q)1/q∥∥∥
Lp(Rn)

+

m∑
l=1

clm

m−l∑
µ=0

cµm−l‖b‖
m−l−µ
L∞(Rn)(3.9)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζb|lVρ(TK)(bµf)dζ
)q)1/q∥∥∥

Lp(Rn)

≤ 2

m∑
l=1

clm

l−1∑
`=1

c`l

m−l∑
µ=0

cµm−l‖b‖
m−l−µ+`
L∞(Rn)
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×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

Vρ(TK)(bµ(∆2−kζb)
l−`f)dζ

)q)1/q∥∥∥
Lp(Rn)

+

m∑
l=1

clm

m−l∑
µ=0

cµm−l‖b‖
m−l−µ
L∞(Rn)

×
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|∆2−kζb|lζ
)q)1/q

Vρ(TK)(bµf)
∥∥∥
Lp(Rn)

=: A2,2,1 +A2,2,2.

For 1 ≤ l ≤ m, 1 ≤ ` ≤ l − 1 and 0 ≤ µ ≤ m − 1, we get by Proposition 2.4
that∥∥∥(∑

k∈Z
2ksq

(∫
Rn

Vρ(TK)(bµ(∆2−kζb)
l−`f)dζ

)q)1/q∥∥∥
Lp(Rn)

=
∥∥∥(∑

k∈Z

(∫
Rn

Vρ(TK)(2ksbµ(∆2−kζb)
l−`f)dζ

)q)1/q∥∥∥
Lp(Rn)

≤ C
∥∥∥(∑

k∈Z
2ksq

(∫
Rn

|bµ(∆2−kζb)
l−`f)|dζ

)q)1/q∥∥∥
Lp(Rn)

≤ C‖b‖µL∞(Rn)

∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|(∆2−kζb)
l−`|dζ

)q)1/q

f
∥∥∥
Lp(Rn)

≤ C‖b‖µL∞(Rn)|Rn|‖f‖Lp(Rn)

×
(( ∞∑

k=1

2k(s−(l−`)γ)q
)1/q

‖b‖l−`Lipγ(Rn) +
( 0∑
k−∞

2ksq
)1/q

(2‖b‖L∞(Rn))
l−`
)

≤ C‖b‖µ+l−`
Lipγ(Rn)‖f‖Lp(Rn),

where in the last inequality of the above inequalities we have used the fact that
s < γ and 1 ≤ l − `. Hence, we get

(3.10) A2,2,1 ≤ C‖b‖mLipγ(Rn)‖f‖Lp(Rn).

By the Lp boundedness for Vρ(TK), one has∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|∆2−kζb|lζ
)q)1/q

Vρ(TK)(bµf)
∥∥∥
Lp(Rn)

≤ |Rn|
(( ∞∑

k=1

2k(s−lγ)q
)1/q

‖b‖lLipγ(Rn) +
( 0∑
k−∞

2ksq
)1/q

(2‖b‖L∞(Rn))
l
)

× ‖Vρ(TK)(bµf)
∥∥∥
Lp(Rn)

≤ C‖b‖lLipγ(Rn)‖b
µf‖Lp(Rn) ≤ C‖b‖l+µLipγ(Rn)‖f‖Lp(Rn).
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Consequently

(3.11) A2,2,2 ≤ C‖b‖mLipγ(Rn)‖f‖Lp(Rn).

We get from (3.9)–(3.11) that

(3.12) A2,2 ≤ C‖b‖mLipγ(Rn)‖f‖Lp(Rn).

Combining (3.12) with (3.7) and (3.8) implies that

(3.13) A2 ≤ C‖b‖mLipγ(Rn)‖f‖Lp(Rn).

It follows from (3.5), (3.6), (3.13) and (1.4) that

(3.14) ‖Vρ(T mK,b)(f)‖Ḟp,qs (Rn) ≤ C‖b‖
m
Lipγ(Rn)‖f‖Fp,qs (Rn).

On the other hand, by the arguments similar to those used to derive [15, (5.10)],
one has

(3.15) Vρ(T mK,b)(f)(x) ≤
m∑
k=0

ckm|bm−k(x)|Vρ(TK)(bkf)(x)

for all x ∈ Rn. Using (3.15), the Lp bounds for Vρ(TK) and Minkowski’s
inequality, we have

(3.16)

‖Vρ(T mK,b)(f)‖Lp(Rn) ≤
m∑
k=0

ckm‖b‖m−kL∞(Rn)‖Vρ(TK)(bkf)‖Lp(Rn)

≤ C
m∑
k=0

ckm‖b‖m−kL∞(Rn)‖b
kf‖Lp(Rn)

≤ C‖b‖mL∞(Rn)‖f‖Lp(Rn).

Combining (3.16) with (3.14) and (1.4) implies the desired boundedness part.

Step 2. Proof of the continuity part. Let 0 < s < 1, 1 < p, q <∞ and
fj → f in F p,qs (Rn) as j → ∞. We know from (1.4) that fj → f in Ḟ p,qs (Rn)
and in Lp(Rn) as j →∞. By the sublinearity of Vρ(T mK,b) and (3.16), we have

that Vρ(T mK,b)(fj) → Vρ(T mK,b)(f) in Lp(Rn) as j → ∞. Hence, it is enough to
conclude that

(3.17) Vρ(T mK,b)(fj)→ Vρ(T mK,b)(f) in Ḟ p,qs (Rn) as j →∞.

Next we shall prove (3.17) by contradiction. Without loss of generality we
may assume that there exists c > 0 such that

(3.18) ‖Vρ(T mK,b)(fj)− Vρ(T mK,b)(f)‖Ḟp,qs (Rn) > c, ∀j ≥ 1.

Since Vρ(T mK,b)(fj) → Vρ(T mK,b)(f) in Lp(Rn) as j → ∞, we may assume by

extracting a subsequence that Vρ(T mK,b)(fj)(x) → Vρ(T mK,b)(f) as j → ∞ for

almost every x ∈ Rn. Hence, ∆2−kζ(Vρ(T mK,b)(fj) − Vρ(T mK,b)(f))(x) → 0 as
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j → ∞ for every (k, ζ) ∈ Z ×Rn and almost every x ∈ Rn. By (3.4) and the
sublinearity of Vρ(TK), we have

(3.19)

|∆2−kζ(Vρ(T mK,b)(fj)− Vρ(T mK,b)(f))(x)|
≤ |∆2−kζ(Vρ(T mK,b)(fj))(x)|+ |∆2−kζ(Vρ(T mK,b)(f))(x)|

≤ G(fj)(2
−kζ, x) + G(f)(2−kζ, x)

≤ G(fj − f)(2−kζ, x) + 2G(f)(2−kζ, x).

From (3.14) we see that

(3.20)

∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|G(fj − f)(2−kζ, x)|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C‖b‖mLipγ(Rn)‖fj − f‖Fp,qs (Rn) → 0 as j →∞.

Therefore, one can extract a subsequence such that

(3.21)

∞∑
j=1

∥∥∥(∑
k∈Z

2ksq
(∫

Rn

|G(fj − f)(2−kζ, x)|dζ
)q)1/q∥∥∥

Lp(Rn)
<∞.

For (k, ζ, x) ∈ Z×Rn × Rn, we set

Γ(k, ζ, x) :=

∞∑
j=1

G(fj − f)(2−kζ, x) + 2G(f)(2−kζ, x).

By (3.19), we have

(3.22) |∆2−kζ(Vρ(T mK,b)(fj)− Vρ(T mK,b)(f))(x)| ≤ Γ(k, ζ, x)

for (k, ζ, x) ∈ Z ×Rn × Rn. By (3.20), (3.21) and Minkowski’s inequality, we
get

(3.23)
(∑
k∈Z

2ksq
(∫

Rn

∫
Rn

(Γ(k, ζ, x))pdxdζ
)q/p)1/q

<∞.

Using (3.22), (3.23) and the arguments similar to those used to derive Propo-
sition 2.5, one can get a contradiction with (3.18). This completes the proof of
Theorem 1.2. �
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