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SOME NEW CLASSES OF ZERO-DIFFERENCE

BALANCED FUNCTIONS AND RELATED CONSTANT

COMPOSITION CODES
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Abstract. Zero-difference balanced (ZDB) functions can be applied to

many areas like optimal constant composition codes, optimal frequency

hopping sequences etc. Moreover, it has been shown that the image set
of some ZDB functions is a regular partial difference set, and hence pro-

vides strongly regular graphs. Besides, perfect nonlinear functions are

zero-difference balanced functions. However, the converse is not true in
general. In this paper, we use the decomposition of cyclotomic polynomi-

als into irreducible factors over Fp, where p is an odd prime to generalize

some recent results on ZDB functions. Also we extend a result intro-
duced by Claude et al. [3] regarding zero-difference-p-balanced functions

over Fpn . Eventually, we use these results to construct some optimal
constant composition codes.

1. Introduction

Zero-difference balanced (ZDB) functions were first introduced by Ding for
constructing optimal constant composition codes [8] and optimal and perfect
difference systems of sets [9]. Recently, Jiang and Liao [14, 15] generalized the
definition of ZDB functions and introduced G-ZDB functions.

Definition ([14,15]). Let (A,+) and (B,+) be two abelian groups of order n
and l, respectively. A function f : A→ B is called a generalized zero-difference
balanced function (G-ZDB function) if there exists a non-empty S ⊂ N such
that

|{x ∈ A : f(x+ a)− f(x) = 0}| ∈ S
for every non-zero a ∈ A. We call the function to be an (n, S) or (n, | Im(f)|, S)-
G-ZDB function. In particular, when S = {λ}, it is called an (n, λ)-ZDB. In
some literature it is also called a zero-difference-λ-balanced function.
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So the ZDB functions introduced by Ding [8] are nothing but a special case
of G-ZDB functions. For the case gcd(n, λ) = 1, several (n, λ)-ZDB functions
are constructed. For references the reader can check [2, 8–11, 22–25] and the
references therein. For the case gcd(n, λ) 6= 1, Luo, et al. [19] constructed
ZDB functions with parameters (pr, ps), where p is prime and 0 ≤ s ≤ r. For
n = 2m − 1, where m is prime, Ding, et al. [11] constructed two classes of
ZDB functions. In their recent works, Jiang and Liao [14,15] generalized these
results and introduced several new constructions for n = 22m−1 or n = pm−1,
where p and m are both primes. Most recently, Liu and Liao [18] introduced
two classes of ZDB functions on the group (Zn,+).

An (n,M, d, [w0, . . . , wq−1])q constant composition code is a code over an

abelian group {b0, b1, . . . , bq−1} with length n, size M , and minimum Hamming
distance d such that in every codeword, the element bi appears exactly wi times
for every i. A constant composition code is called a permutation code if n = q
and wi = 1 for all i.

Let A = {a0, . . . , an−1} and B = {b0, . . . , bl−1} be two abelian groups, and
let f be a function from A to B. Define wi = |{x ∈ A : f(x) = bi}| for
0 ≤ i ≤ l − 1. Now define Cf as

(1) Cf = {(f(a0 + ai), . . . , f(an−1 + ai)) : 0 ≤ i ≤ n− 1}.
Also let Aq(n, d, [w0, w1, . . . , wq−1]) denote the maximum size of an (n,M, d,

[w0, . . . , wq−1])q constant composition code. Luo, Fu, Han Vick and Chen [19]
developed the following bound for the constant composition codes.

Lemma 1.1 ([19]). If nd− n2 + (w2
0 + w2

1 + · · ·+ w2
q−1) > 0, then

Aq(n, d, [w0, w1, . . . , wq−1]) ≤ nd

nd− n2 + (w2
0 + w2

1 + . . .+ w2
q−1)

.

Ding [8] introduced the next result to construct constant composition codes
from ZDB functions.

Proposition 1.2 ([8]). If f : A → B is a zero-difference-δ-balanced function,
then the Cf of (1) is an (n, n, n− δ, [w0, . . . , wl−1])l constant composition code
(CCC) over B, and is optimal with respect to the Luo-Fu-Vinck-Chen bound of
Lemma 1.1.

Binary constant composition codes have relatively a long history. Non-
binary constant composition codes were also studied since the 60’s. Both alge-
braic and combinatorial aspects of non-binary constant composition codes have
been explored so far. For more information one can check [1,4–7,12,13,19] and
the references therein.

The remaining part of the correspondence is organized as follows. In Sec-
tion 2, we present some basic notations and definitions on cyclotomic poly-
nomials and their decompositions into irreducible polynomials. In Section 3,
we introduce some new classes of ZDB functions which generalize the classes
introduced by Luo and Liao [18]. In Section 4, we extend a result introduced
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by Claude et al. [3] regarding zero-difference-p-balanced functions of the form
FT (x) = xp+1 + αtrK/F (βxp+1) over Fpn when n is even. In Section 5, we
use the results from Section 3 to construct new classes of optimal constant
composition codes.

2. Preliminaries

We first discuss briefly about cyclotomic cosets and their relations with cy-
clotomic polynomials.

Definition. The the set Cj = {jpk (mod n), k ∈ N} is called the cyclotomic
coset of j modulo n (relative to powers of p).

Clearly, the cyclotomic cosets modulo n form a partition of Zn. Assuming
gcd(n, p) = 1, we have

xn − 1 =

h∏
t=1

ft(x) with ft(x) =
∏
i∈Cjt

(x− αi),

where α is a primitive nth root of unity (which exists in an extension field
of Fp since gcd(n, p) = 1), and Cj1 , . . . , Cjh are the distinct cyclotomic cosets
modulo n. Recall also that for n ≥ 3,

xn − 1 =
∏
m|n

Qm,

where Qm denotes the m-th cyclotomic polynomial, see [17, Theorem 2.45].
The cyclotomic polynomial Qm factors into irreducible polynomials f1, . . .,
fϕ(m)/d ∈ Fp[x], each of degree d, where d = ordmp and ϕ is the Euler ϕ-

function. Here ordmp denotes the smallest integer l, such that pl ≡ 1 (mod m).
So precisely, we can write

(2) Qm = f1 · · · fϕ(m)/d with ft(x) =
∏
j∈Ct

(x− αj),

where C1, . . . , Cϕ(m)/d are the cyclotomic cosets modulo n relative to powers of
p (see [17, Theorem 2.47], [21, Sect. 4.4]). Also ν(l) denotes the 2-adic valuation
of an integer l, i.e., 2ν(l) is the largest power of 2 which divides l.

Lemma 2.1 ([20, Lemma 2]). Let m = qe11 q
e2
2 · · · q

ek
k be odd, relatively prime

to p, di = ordqip, 1 ≤ i ≤ k, and d = ordmp. Suppose the irreducible factors
of Qm are f1, . . . , fϕ(m)/d.

(i) The polynomials f1, . . . , fϕ(m)/d are self-reciprocal if and only if ν(d1) =
ν(d2) = · · · = ν(dk) > 0.

In particular, if m is prime, then f1, . . . , f(m−1)/d are self-reciprocal
if and only if d is even.
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(ii) If ν(di) 6= ν(dj) for some 1 ≤ i, j ≤ k, then none of the polynomials
ft, 1 ≤ t ≤ ϕ(m)/d, is self-reciprocal, and for each t, 1 ≤ t ≤ ϕ(m)/d,
there exists a unique t′ 6= t, 1 ≤ t′ ≤ ϕ(m)/d, such that ft′ = f∗t is the
reciprocal of ft.

By Lemma 2.1 we see that the polynomial ft(x) in (2) is self-reciprocal if
and only if Cjt , containing the integer jt, also contains its inverse −jt modulo
n. If this is not the case, then there is another cyclotomic coset Cjt′ = Cn−jt
consisting of the inverses of the elements of Cjt . Then ft′ is the reciprocal of
ft.

3. New classes of ZDB functions

In this section, we generalize two results of [18, Theorems 2.1 and 2.2] based
on the properties of cyclotomic polynomials and cyclotomic cosets.

Theorem 3.1. Let (p, n = q) be a pair of two different odd primes with d =
ordqp.

(i) If d is even, then there exists a ZDB function with parameters

(q, 1 +
q − 1

d
, d− 1).

(ii) If d is odd, then there exists a ZDB function with parameters

(q, 1 +
q − 1

2d
, 2d− 1).

Proof. We have xq − 1 = Q1Qq, where

Qq = f1 · · · f(q−1)/d with ft(x) =
∏
j∈Ct

(x− αj),

C1, . . . , C(q−1)/d are the cyclotomic cosets modulo q relative to powers of p and
α is a primitive nth root of unity (which exists in an extension field of Fp).

(i) If d = ordnp is even, then from Lemma 2.1 we get that ft’s are all
irreducible and self-reciprocal and of degree d. Following the same technique
mentioned in [18], we define

f : (Zn,+)→ (Zn,+)

x 7→ ix,

where ix is the coset leader of Ct such that x ∈ Ct.
Now we know that Zn = C0 ∪ C1 ∪ C2 ∪ · · · ∪ C(q−1)/d and |Ci| = d except

C0 which is a singleton set. So |Imf | = 1 + q−1
d . For any given a 6≡ 0 (mod n),

it suffices to prove that the number of x such that f(x + a) = f(x) is always
d − 1. Now f(x + a) = f(x) ⇐⇒ ix+a = ix ⇐⇒ x, x + a ∈ Ci for some i 6=
0 ⇐⇒ αx, αx+a are roots of same ft ⇐⇒ x + a ≡ pkx (mod n) for 1 ≤ k ≤
d − 1 ⇐⇒ unique solution x ≡ a

pk−1 (mod n) as gcd(pk − 1, q) = 1 for 1 ≤
k ≤ d − 1. Therefore, |{x ∈ Zn : f(x + a) − f(x) = 0}| = d − 1 for any a 6≡



SOME NEW CLASSES OF ZERO-DIFFERENCE BALANCED FUNCTIONS 1331

0(mod n). So the function f defined above is a ZDB function with parameters
(q, 1 + q−1

d , d− 1).
(ii) If d = ordnp is odd, then Ct 6= C−t and Ct ∩ C−t = φ for t 6= 0.

So following the same argument in [18] and (i), we define the coset leader of
Ct ∪ C−t to be the least integer in that set. Then we define

f : (Zn,+)→ (Zn,+)

x 7→ ix,

where ix is the coset leader of Ct ∪ C−t containing x. So |Imf | = 1 + q−1
2d .

Now for a 6≡ 0 (mod n), f(x + a) = f(x) ⇐⇒ ix+a = ix ⇐⇒ x, x + a ∈
Ct ∪ C−t for some t. We have the following two cases:

Case 1: ft(α
x) = 0, i.e., x ∈ Ct. Then ft(α

x+a) = 0 or f−t(α
x+a) = 0. So

we must have 1 ≤ k ≤ d− 1 or 1 ≤ r ≤ d such that

(3) x+ a ≡ pkx (mod n)

or

(4) x+ a ≡ −prx (mod n).

We get a unique solution from (3) that is x ≡ a
pk−1 (mod n) as gcd(pk−1, q) =

1 for 1 ≤ k ≤ d− 1 and (4) has unique solution x ≡ −a
pr+1 (mod n) as gcd(pr +

1, q) = 1 for 1 ≤ r ≤ d. As ordnp = d is odd, we cannot have pr ≡ −1 (mod n)
for 1 ≤ r ≤ d. Besides, (3) and (4) cannot have common solutions as ft and
f−t do not have any common roots.

Case 2: f−t(α
x) = 0, i.e., x ∈ C−t. We have the same solutions like

Case 1. Therefore, |{x ∈ Zn : f(x + a) − f(x) = 0}| = 2d − 1 for any
a 6≡ 0 (mod n). So the function f defined above is a ZDB function with
parameters (q, 1 + q−1

2d , 2d− 1). �

Example 3.2. For p = 7 and n = 19, we have the complete list of cosets:

[[0], [1, 7, 11], [2, 3, 14], [4, 6, 9], [5, 16, 17], [8, 12, 18], [10, 13, 15]].

Here ord197 = 3. If we consider the function f in Theorem 3.1, then |Im(f)| =
4. For a = 2 the pairs (x, x + a) having the same images are {(13, 15), (4, 6),
(14, 16), (3, 5), (18, 1)}.

Remark 3.3. For the particular case of (p, n = 2p − 1) both odd primes, the
first part of Theorem 3.1 reduces to Theorem 2.1 and the second part reduces
to Theorem 2.2 of [18], respectively.

Theorem 3.4. Let p, q be two different odd primes and let ordqp = ordq2p = d.
Then there exists a ZDB function with parameters

(q2, 1 +
q2 − 1

d
, d− 1) if d is even,

(q2, 1 +
q2 − 1

2d
, 2d− 1) if d is odd.
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Proof. We have

xn − 1 = Q1QqQq2 .

First, we consider ordqp = ordq2p = d and d is even, then we can write Qq(x) =∏ q−1
d

i=1 fi andQq2(x) =
∏ q(q−1)

d
j=1 hj , where fi and hj are irreducible self-reciprocal

polynomials of degree d. We define the same function

f : (Zn,+)→ (Zn,+)

x 7→ ix,

where ix is the coset leader of Ct such that x ∈ Ct. So |Im(f)| = 1 + q−1
d +

q(q−1)
d . For any given a 6≡ 0 (mod n), f(x + a) = f(x) ⇐⇒ ix+a = ix ⇐⇒

x, x + a ∈ Ct. So x, x + a ∈ Ct for same t. Then x + a ≡ xpk (mod n) for
1 ≤ k ≤ d− 1 which implies

(5) x(pk − 1) ≡ a (mod n), 1 ≤ k ≤ q − 1.

Now (5) has unique solution x ≡ a
pk−1 (mod n) as gcd(pk − 1, n) = 1 for 1 ≤

k ≤ d − 1. Therefore, |{x ∈ Zn : f(x + a) − f(x) = 0}| = d − 1 for any
a 6≡ 0 (mod n). So the function f defined above is a ZDB function with

parameters (q2, 1 + q2−1
d , d− 1).

Now when d is odd, we follow the similar arguments used in Theorem 3.1.
Using the same function f , we can get the ZDB function with parameters

(q2, 1 + q2−1
2d , 2d− 1). �

Example 3.5. For p = 19 and n = 169, we have the complete list of cosets:
[[0], [1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168], [2, 9, 29, 38, 44, 46, 123,
125, 131, 140, 160, 167], [3, 41, 57, 66, 69, 71, 98, 100, 103, 112, 128, 166], [4,
18, 58, 76, 77, 81, 88, 92, 93, 111, 151, 165], [5, 12, 54, 59, 62, 74, 95, 107, 110,
115, 157, 164], [6, 27, 31, 37, 55, 82, 87, 114, 132, 138, 142, 163], [7, 8, 15, 17,
36, 53, 116, 133, 152, 154, 161, 162], [10, 21, 24, 45, 51, 61, 108, 118, 124, 145,
148, 159], [11, 35, 40, 73, 75, 84, 85, 94, 96, 129, 134, 158], [13, 26, 39, 52, 65,
78, 91, 104, 117, 130, 143, 156], [14, 16, 30, 34, 63, 72, 97, 106, 135, 139, 153,
155], [20, 42, 47, 48, 67, 79, 90, 102, 121, 122, 127, 149], [25, 28, 32, 43, 60,
68, 101, 109, 126, 137, 141, 144], [33, 49, 50, 56, 64, 83, 86, 105, 113, 119, 120,
136]]. Here ord16919 = ord1319 = 12. If we consider the function introduced in
Theorem 3.4, then |Im(f)| = 15. For a = 1 the pairs (x, x+a) having the same
images are {(47, 48), (146, 147), (119, 120), (161, 162), (92, 93), (84, 85), (76, 77),
(7, 8), (49, 50), (22, 23), (121, 122)}.

Remark 3.6. The condition mentioned in the above theorem ordqp = ordq2p can
be found for some odd primes p, q. For example ord73 = ord723 = 5, ord113 =
ord1123 = 5 etc. But for p = 2, it is extremely rare to find q with that
condition. Actually, when ordq2 = ordq22, then q is a Wieferich prime, i.e.,
2q−1 ≡ 1 (mod q2). It has been found by computer search [16] that the only
Wieferich primes less than 1.25× 1015 are 1039 and 3511.
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4. Zero-difference-p-balanced functions over Fpn

Let p be an odd prime and set F = GF (p) andK = GF (pn). Quadratic zero-
difference-p-balanced functions over Fpn have been discussed widely by Claude

et al. [3]. They considered F (x) = xp+1 + αtrK/F (βxp+1 + γxp
3+1) over K

and proved that F (x) is zero-difference-p-balanced with some restrictions on
α, β, γ ∈ K. But they verified the result only for n = 4 and 6. Our next result
will be an extension of Theorem 1 of [3]. We need to recall that K∗ = K −{0}
and trK/F (x) =

∑n−1
i=0 x

pi .

Theorem 4.1. Let n be even. Let

FT (x) = xp+1 + αtrK/F (βxp+1),

where α, β ∈ K∗. Then FT is a zero-difference-p-balanced function if and only
if trK/F (αβ) 6= −1.

Proof. Instead of looking at FT (x+ a)− FT (x) = 0 we look at

(6) FT (ax+ a)− FT (ax) = 0.

The goal is to prove that (6) has exactly p solutions in K for every a ∈ K∗.
Expanding (6) yields

(7) ap+1(xp + x+ 1) + αtrK/F (βap+1(xp + x+ 1)) = 0.

As n is even, xp + x + 1 has p roots in K (Lemma 6 in [3]). Simply, any root
of xp + x + 1 is a solution of (7). Hence (7) has at least p solutions for every
a ∈ K∗. The goal is then to prove that (7) has no other solutions.

Divide (7) by α

(8) α−1ap+1(xp + x+ 1) + trK/F (βap+1(xp + x+ 1)) = 0.

Set k = α−1ap+1(xp + x + 1). As the image of trK/F is in F , we have k ∈ F .
Then (8) becomes:

k + trK/F (βαk) = 0

or

k + ktrK/F (βα) = 0.

If k = 0, then xp + x+ 1 = 0 and we have one of the known roots. So suppose
k 6= 0. We get trK/F (βα) = −1. Thus if trK/F (βα) 6= −1 there are no
additional solutions to (7) and FT is zero-difference-p-balanced. �

Remark 4.2. This theorem does extend Theorem 1(i) of [3]. The function
considered in [3] is

F (x) = xp+1 + αtrK/F (βxp+1 + γxp
3+1).

Since n = 4 we have xp
4

= x. Thus

trK/F (γxp
3+1) = trK/F ((γxp

3+1)) = trK/F (γpxp
4+p)

= trK/F (γpxp+1).
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Hence

F (x) = xp+1 + αtrK/F ((β + γp)xp+1).

Apply the theorem. Then F (x) is ZDB if and only if trK/F (α(β + γp)) 6= −1.
Again

trK/F (αγp) = trK/F ((αγp)
p3

) = trK/F (αp
3

γp
4

) = trK/F (αp
3

γ).

Thus the theorem says F (x) is ZDB if and only if trK/F (αβ + αp
3

γp
4

) 6= −1.
That is the statement of Theorem 1(i) in [3].

5. Some new classes of constant composition derived from
zero-difference balanced functions

In this section, we use the above mentioned ZDB functions to construct
constant composition codes.

In Theorems 3.1 and 3.4, we have introduced zero difference d−1 and 2d−1-
balanced functions, where (p, n = q) and (p, n = q2), respectively, where p, q
are distinct odd primes. Using those results we can introduce the following two
CCCs.

Theorem 5.1. Suppose that (p, n = q) are distinct odd primes with d = ordqp.
If f is the function defined in Theorem 3.1, then Cf of (1) is an optimal CCC
over Fq with parameters

(q, q, q − (d− 1), [1, d, d, . . . , d︸ ︷︷ ︸
q−1
d

, 0, . . . , 0︸ ︷︷ ︸
(q−1)(d−1)

d

])

if d is even, and

(q, q, q − (2d− 1), [1, 2d, . . . , 2d︸ ︷︷ ︸
q−1
2d

, 0, . . . , 0︸ ︷︷ ︸
(q−1)(2d−1)

2d

])

if d is odd.

Proof. The proof follows from Theorem 3.1 and Proposition 1.2. �

Example 5.2. For n = q = 113 and p = 7, d = ordqp = 14. Then Cf of (1)
with f defined in Theorem 3.1 is an optimal CCC over F113 with parameters
(113, 113, 100, [1, 14, . . . , 14︸ ︷︷ ︸

8 times

, 0, . . . , 0︸ ︷︷ ︸
104 times

]).

Theorem 5.3. Suppose that p, q are two different odd primes with n = q2.
Also let ordqp = ordq2p = d. If f is the function defined in Theorem 3.4, then
Cf of (1) is an optimal CCC over Fp with parameters

(q2, q2, q2 − (d− 1), [1, d, d, . . . , d︸ ︷︷ ︸
q2−1

d

, 0, . . . , 0︸ ︷︷ ︸
(q2−1)(d−1)

d

])
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if d is even and

(q2, q2, q2 − (2d− 1), [1, 2d, 2d, . . . , 2d︸ ︷︷ ︸
q2−1
2d

, 0, . . . , 0︸ ︷︷ ︸
(q2−1)(2d−1)

2d

])

if d is odd.

Proof. The proof follows from Theorem 3.4 and Proposition 1.2. �

Example 5.4. For p = 19 and n = 169, ord16919 = ord1319 = 12. If we
consider the function introduced in Theorem 4.1, then Im(f) = 15. Then
Cf of (1) with f defined in Theorem 3.1 is an optimal CCC over F169 with
parameters (169, 169, 158, [1, 15, . . . , 15︸ ︷︷ ︸

14 times

, 0, . . . , 0︸ ︷︷ ︸
154 times

]).

Remark 5.5. As Theorem 4.1 extends Theorem 1 of [3], we can definitely get
optimal CCC with parameter

(pn, pn, pn − p, [1, p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
pn−1
p+1

, 0, . . . , 0︸ ︷︷ ︸
(pn−1)p

p+1

])

when n is even.

6. Conclusion

In this paper, we have generalized some results mentioned in [18]. The results
introduced by Liao et al. [18] were for particular pair (n = 2p − 1, p) of odd
prime numbers. We have extended those results for any pair (q, p) of distinct
odd primes. We have also introduced a class of ZDB functions for n = q2 with
some restrictions. Later, we have extended a result on ZDB functions of the
type FT (x) = xp+1 + αtrK/F (βxp+1), introduced by Claude et al. [3]. Ding
used ZDB functions to construct optimal constant composition codes. Similar
constructions are also possible in our cases.

Acknowledgement. I would like to thank my advisor Professor Robert
Fitzgerald (retired) from department of mathematics, Southern Illinois Uni-
versity, Carbondale, USA for his valuable advice leading to writing this paper.
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