IRREDUCIBILITY OF THE MODULI SPACE FOR THE QUOTIENT SINGULARITY $\frac{1}{2 k+1}(k+1,1,2 k)$

Seung-Jo Jung

Abstract

A 3-fold quotient terminal singularity is of the type $\frac{1}{r}(b, 1$, $-1)$ with $\operatorname{gcd}(r, b)=1$. In [6], it is proved that the economic resolution of a 3 -fold terminal quotient singularity is isomorphic to a distinguished component of a moduli space \mathcal{M}_{θ} of θ-stable G-constellations for a suitable θ. This paper proves that each connected component of the moduli space \mathcal{M}_{θ} has a torus fixed point and classifies all torus fixed points on \mathcal{M}_{θ}. By product, we show that for $\frac{1}{2 k+1}(k+1,1,-1)$ case the moduli space \mathcal{M}_{θ} is irreducible.

1. Introduction

Let $G \subset \mathrm{GL}_{n}(\mathbb{C})$ be a finite group. The group G acts on \mathbb{C}^{n} naturally. If the quotient variety $X:=\mathbb{C}^{n} / G$ is singular, we may consider the resolution of singularities $Y \rightarrow X$. A natural question in this line is whether Y has a modular interpretation in terms of G-equivariant objects on \mathbb{C}^{n}. A G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^{n} is called a G-constellation if $\mathrm{H}^{0}(\mathcal{F})$ is isomorphic to $\mathbb{C}[G]$ as G-representations. The moduli spaces of G-constellations can be constructed via King's stability [8] where the stability parameter space

$$
\Theta=\left\{\theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G])=0\right\},
$$

where $R(G)$ is the representation ring of G. For fixed θ, a G-constellation is said to be θ-(semi) stable if $\theta(\mathcal{G})>0(\theta(\mathcal{G}) \geq 0)$ for every non-zero proper G eqiuivariant subsheaf $\mathcal{G} \subset \mathcal{F}$. We say a parameter θ is generic if all θ-semistable objects are θ-stable. The moduli space \mathcal{M}_{θ} of θ-stable G-constellations has a special irreducible component Y_{θ}.

It is known that the 3 -fold terminal quotient singularity is the quotient singularity of type $\frac{1}{r}(b, 1, r-1)$ with $\operatorname{gcd}(b, r)=1$, which means that the quotient by

$$
G=\left\{\operatorname{diag}\left(\epsilon^{b}, \epsilon, \epsilon^{-1}\right) \mid \epsilon^{r}=1\right\} \subset \mathrm{GL}_{3}(\mathbb{C})
$$

Received November 2, 2021; Revised June 21, 2022; Accepted July 15, 2022.
2010 Mathematics Subject Classification. 14B05,14J17.
Key words and phrases. Terminal quotient singularities, economic resolutions.
This work was partially supported by NRF grant (NRF-2021R1C1C1004097) of the Korean government.
(see e.g. [10]). This quotient singularity $X:=\mathbb{C}^{3} / G$ has an economic resolution $\varphi: Y \rightarrow X$ whose discrepancy is minimal. More precisely, it satisfies

$$
K_{Y}=\varphi^{*}\left(K_{X}\right)+\sum_{1 \leq i<r} \frac{i}{r} E_{i}
$$

where E_{i} 's are prime exceptional divisors. In [7], Kędzierski proved that there is a parameter θ such that the normalisation of Y_{θ} is isomorphic to Y. Further, it is proved that the component Y_{θ} is actually smooth and a connected component of \mathcal{M}_{θ} in [6]. It is quite natural to ask whether \mathcal{M}_{θ} is irreducible or not. On the other hand, since G is abelian, there is a natural torus $\mathbf{T}=\left(\mathbb{C}^{\times}\right)^{3}$-action on \mathcal{M}_{θ}.

In this paper, we first prove that for the group of the type $\frac{1}{r}(b, 1,-1)$ with $\operatorname{gcd}(r, b)=1$ and for generic parameter θ each connected component of \mathcal{M}_{θ} has a T-fixed point. Thus if we show that every \mathbf{T}-fixed point lies over Y_{θ}, then we can conclude that $\mathcal{M}_{\theta}=Y_{\theta}$ (see Proposition 3.9). Using this result, we focus on a partial case where G is of type $\frac{1}{2 k+1}(k+1,1,2 k)$. In this case, we can classify all \mathbf{T}-invariant G-constellations and show that they lie over Y_{θ}. This implies that \mathcal{M}_{θ} is irreducible so the economic resolution Y is isomorphic to \mathcal{M}_{θ} itself, which was stated in [5] without complete proofs.

This paper is organized as follows. We begin with Section 2 to recall general theory of G-constellations and their moduli spaces. Section 3 is devoted to apply the result in $[6]$ to our case. Then in Section 4, we state the irreducibility theorem and prove it.
Acknowledgement. First of all, I would like to thank Miles Reid for fruitful discussion where lots of ideas in this paper stem from. In addition, I would like to thank the referee for many valuable comments and corrections.

2. G-constellations and G-prebricks

2.1. Moduli spaces of G-constellations

This section reviews G-constellations and their moduli spaces (see e.g. [2, 3, 8]).

Let G be a finite diagonal cyclic subgroup of $\mathrm{GL}_{3}(\mathbb{C})$.
Definition 2.1. A G-constellation is a G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^{3} with $\mathrm{H}^{0}(\mathcal{F})$ isomorphic to the regular representation $\mathbb{C}[G]$ of G.

Define $R(G):=\bigoplus_{\rho \in \operatorname{Irr} G} \mathbb{Z} \rho$. For a stability parameter $\theta \in \Theta$ where

$$
\Theta=\left\{\theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G])=0\right\}
$$

we say that:
(i) a G-constellation \mathcal{F} is θ-semistable if $\theta(\mathcal{G}) \geq 0$ for every non-zero proper G-eqiuivariant subsheaf of \mathcal{F};
(ii) a G-constellation \mathcal{F} is θ-stable if $\theta(\mathcal{G})>0$ for every non-zero proper G-eqiuivariant subsheaf of \mathcal{F};
(iii) θ is generic if every θ-semistable object is θ-stable.

For generic θ, a fine moduli space \mathcal{M}_{θ} of θ-stable G-constellations exists as a quasi-projective scheme by King [8]. Furthermore the moduli space \mathcal{M}_{θ} has a unique irreducible component Y_{θ} which is a not-necessarily-normal toric variety birational to the quotient variety \mathbb{C}^{n} / G by Craw-Maclagan-Thomas [3].
Definition 2.2. The irreducible component Y_{θ} in \mathcal{M}_{θ} is called the birational component of \mathcal{M}_{θ}.

Note that via the $\mathbf{T}=\left(\mathbb{C}^{\times}\right)^{n}$-action on \mathbb{C}^{n}, the algebraic torus \mathbf{T} naturally acts on the moduli space \mathcal{M}_{θ}. The \mathbf{T}-fixed points on \mathcal{M}_{θ} play a crucial role in the proof of irreduciblity of \mathcal{M}_{θ}.
Definition 2.3. For a G-equivariant sheaf \mathcal{G}, the support, denoted by $\operatorname{supp}(\mathcal{G})$, of \mathcal{G} is the set of irreducible representations which appear in $\mathrm{H}^{0}(\mathcal{G})$.

2.2. G-prebricks and T-fixed points on $\mathcal{M}_{\boldsymbol{\theta}}$

This section introduces G-prebricks and their correspondence with \mathbf{T}-fixed points on \mathcal{M}_{θ}.

Let G be the group of type $\frac{1}{r}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, i.e.,

$$
G=\left\langle\operatorname{diag}\left(\epsilon^{\alpha_{1}}, \epsilon^{\alpha_{2}}, \epsilon^{\alpha_{3}}\right) \mid \epsilon^{r}=1\right\rangle \subset \mathrm{GL}_{3}(\mathbb{C}) .
$$

Define the lattice

$$
L=\mathbb{Z}^{3}+\mathbb{Z} \cdot \frac{1}{r}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

is an overlattice of $\bar{L}:=\mathbb{Z}^{3}$. We identify the dual lattices $\bar{M}:=\operatorname{Hom}_{\mathbb{Z}}(\bar{L}, \mathbb{Z})$ and $M:=\operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$ with Laurent monomials and G-invariant Laurent monomials, respectively. The embedding of G into the torus $\mathbf{T}=\left(\mathbb{C}^{\times}\right)^{3} \subset \mathrm{GL}_{3}(\mathbb{C})$ induces a surjective homomorphism

$$
\mathrm{wt}: \bar{M} \longrightarrow G^{\vee},
$$

where G^{\vee} denotes the character group $G^{\vee}:=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$of G.
Let $\bar{M}_{\geq 0}$ denote genuine monomials in \bar{M}, i.e.,

$$
\bar{M}_{\geq 0}=\left\{x^{m_{1}} y^{m_{2}} z^{m_{3}} \in \bar{M} \mid m_{i} \geq 0 \text { for all } i\right\} .
$$

For a subset $A \subset \mathbb{C}\left[x^{ \pm}, y^{ \pm}, z^{ \pm}\right]$, let $\langle A\rangle$ denote the $\mathbb{C}[x, y, z]$-submodule of $\mathbb{C}\left[x^{ \pm}, y^{ \pm}, z^{ \pm}\right]$generated by A.
2.2.1. G-clusters and G-graphs. For a G-invariant subscheme Z, if \mathcal{O}_{Z} is a G-constellation, we call it a G-cluster.

Suppose that a G-cluster \mathcal{O}_{Z} is \mathbf{T}-invariant. This means that Z is given by a monomial ideal I_{Z}. In this case, we define:

$$
\Gamma:=\left\{x^{m_{1}} y^{m_{2}} z^{m_{3}} \in \bar{M}_{\geq 0} \mid x^{m_{1}} y^{m_{2}} z^{m_{3}} \notin I\right\} .
$$

Then Γ gives a basis of $\mathrm{H}^{0}\left(\mathcal{O}_{Z}\right)$. From the properties of Γ, the following definition is natural (due to Nakamura [9]).

Definition 2.4. A (Nakamura) G-graph is a subset of genuine monomials in $\bar{M}_{\geq 0}$ such that:
(i) the monomial $\mathbf{1}$ is in Γ;
(ii) for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in$ Γ of weight ρ, i.e., wt: $\Gamma \rightarrow G^{\vee}$ is bijective;
(iii) if $\mathbf{p}^{\prime} \cdot \mathbf{p} \in \Gamma$ for $\mathbf{p}, \mathbf{p}^{\prime} \in \bar{M}_{\geq 0}$, then $\mathbf{p} \in \Gamma$.

From the argument above, we have a one-to-one correspondence between the set of G-graphs and the set of \mathbf{T}-invariant G-clusters. Thus for classifying all T-invariant G-clusters, we can classify all G-graphs.

Similarly, for G-constellations, we define the following (see $[5,6]$).
Definition 2.5. A G-prebrick Γ is a subset of Laurent monomials in $\mathbb{C}\left[x^{ \pm}, y^{ \pm}\right.$, $\left.z^{ \pm}\right]$such that:
(i) the monomial $\mathbf{1}$ is in Γ;
(ii) for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in$ Γ of weight ρ, i.e., wt: $\Gamma \rightarrow G^{\vee}$ is bijective;
(iii) if $\mathbf{p}^{\prime} \cdot \mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{p}, \mathbf{p}^{\prime} \in \bar{M}_{\geq 0}$, then $\mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$;
(iv) the set Γ is connected in the sense that for any element \mathbf{m}_{ρ}, there is a (fractional) path in Γ from \mathbf{m}_{ρ} to $\mathbf{1}$ whose steps consist of multiplying or dividing by one of x, y, z.

For a G-prebrick Γ, we define $\mathrm{wt}_{\Gamma}: \bar{M} \rightarrow \Gamma$ by $\mathrm{wt}_{\Gamma}:=(\mathrm{wt})^{-1} \circ \mathrm{wt}$. Thus $\mathrm{wt}_{\Gamma}(\mathbf{m})$ is the unique element \mathbf{m}_{ρ} in Γ of the same weight as $\mathbf{m} \in \bar{M}$.

Let Γ be a G-prebrick. Define

$$
C(\Gamma):=\langle\Gamma\rangle /\langle B(\Gamma)\rangle,
$$

where

$$
B(\Gamma):=\{x \cdot \mathbf{m}, y \cdot \mathbf{m}, z \cdot \mathbf{m} \mid \mathbf{m} \in \Gamma\} \backslash \Gamma
$$

Since $B(\Gamma)$ is generated by monomials, the module $C(\Gamma)$ is a torus invariant G-constellation corresponding to a \mathbf{T}-fixed point in the moduli space by [6]. Here the G-prebrick Γ forms a monomial \mathbb{C}-basis of the G-constellation $C(\Gamma)$.

Remark 2.6. In [6], it is shown that every \mathbf{T}-fixed point on the birational component Y_{θ} corresponds to a G-prebrick. However, we do not know if there is a G-prebrick corresponding to a \mathbf{T}-fixed point on $\mathcal{M}_{\theta} \backslash Y_{\theta}$.

Definition 2.7. A G-prebrick Γ is said to be θ-stable if the torus invariant G-constellation $C(\Gamma)$ is θ-stable.

For a G-prebrick $\Gamma=\left\{\mathbf{m}_{\rho}\right\}, S(\Gamma) \subset M$ is the subsemigroup generated by $\frac{\mathbf{p} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}\left(\mathbf{p} \cdot \mathbf{m}_{\rho}\right)}$ for all $\mathbf{p} \in \bar{M}_{\geq 0}, \mathbf{m}_{\rho} \in \Gamma$. In [6], it is proved that $S(\Gamma)$ is finitely generated so it induces an affine toric variety.
Proposition 2.8 ([6, Lemma 2.11]). For a G-prebrick Γ, the semigroup $S(\Gamma)$ is generated by $\frac{\mathbf{b}}{\mathrm{wt}_{\Gamma}(\mathbf{b})}$ for all $\mathbf{b} \in B(\Gamma)$ as a semigroup. In particular, $S(\Gamma)$ is finitely generated as a semigroup.

Definition 2.9. For a G-prebrick Γ and a cone σ, we say that Γ corresponds to σ if $S(\Gamma)=\mathbb{C}\left[\sigma^{\vee} \cap M\right]$.

3. 3-fold terminal quotient singularities and G-constellations

This section reviews the results in [6] about 3-fold terminal quotient singularities. For simplicity, we restrict us for the type of $\frac{1}{2 k+1}(k+1,1,2 k)$ which is the main case of this paper. In this section, G is the group of type $\frac{1}{r}(k+1,1,2 k)$ with $r=2 k+1$. Mainly we apply the method in [6] to this case directly.

The quotient singularity $X:=\mathbb{C}^{3} / G$ does not have crepant resolutions but X has a certain toric resolution introduced by Danilov [4] (see also [10]). Consider the lattice

$$
L=\mathbb{Z}^{3}+\mathbb{Z} \cdot \frac{1}{r}(k+1,1,2 k)
$$

For each $1 \leq i \leq 2 k$, let $v_{i}:=\frac{1}{2 k+1}(\overline{-k i}, i, r-i) \in L$ where - denotes the residue modulo r. The economic resolution of \mathbb{C}^{3} / G is the toric variety obtained by the consecutive weighted blowups at $v_{2}, v_{4}, \ldots, v_{2 k}, v_{1}, v_{3}, \ldots, v_{2 k-1}$ from \mathbb{C}^{3} / G. Each discrepancy of the economic resolution is in the interval $(0,1)$ (see [10]).

Let Σ be the toric fan of the economic resolution Y of $X=\mathbb{C}^{3} / G$. In the fan Σ, we have the following $(4 k+1) 3$-dimensional cones:

$$
\begin{cases}\sigma_{i}=\operatorname{Cone}\left(e_{1}, v_{i-1}, v_{i}\right) & \text { for } 1 \leq i \leq 2 k+1 \tag{3.1}\\ \sigma_{i}^{\triangle}=\operatorname{Cone}\left(v_{2 i-1}, v_{2 i-2}, v_{2 i}\right) & \text { for } 1 \leq i \leq k \\ \sigma_{i}^{\nabla}=\operatorname{Cone}\left(e_{2}, v_{2 i-2}, v_{2 i}\right) & \text { for } 1 \leq i \leq k\end{cases}
$$

Example 3.2. Let G be the group of type $\frac{1}{7}(4,1,6)$. The fan of the economic resolution of the quotient variety is shown in Figure 3.1.

For the moduli description of the economic resolutions, we need to define
(i) an admissible G-brickset, and
(ii) an admissible chamber in Θ.

3.1. Stability parameter space

The index set $I:=\{0,1, \ldots, 2 k\}$ is identified with $\mathbb{Z} /(2 k+1) \mathbb{Z}$. For each $i \in I$, we define $\theta_{i} \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q})$ by $\theta_{i}\left(\rho_{j}\right)=\delta_{i j}$. Here ρ_{j} denotes the irreducible representation of weight j. Note that $\theta_{i}-\theta_{j}$ is an element of the stability parameter space Θ. Applying [6] to this case, we have the following.

Proposition 3.3 (cf. [5, 6]). Let us consider the group G of type $\frac{1}{2 k+1}(k+$ 1,1,2k). For the permutation

$$
\omega=\left(\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & \ldots & 2 k-2 & 2 k-1 & 2 k \\
0 & 1 & k+1 & 2 & k+2 & \ldots & 2 k-1 & k & 2 k
\end{array}\right)
$$

Figure 3.1. Fan of the economic resolution for $\frac{1}{7}(4,1,6)$
the admissible chamber \mathfrak{C} is the open cone generated by

$$
\varepsilon_{i}:=\sum_{j=0}^{i-1}\left(\theta_{\omega(j)+1}-\theta_{\omega(j)}\right)
$$

for $i=1, \ldots, 2 k$, i.e., $\mathfrak{C}=\left\{a_{1} \varepsilon_{1}+\cdots+a_{2 k} \varepsilon_{2 k} \mid a_{i} \in \mathbb{R}_{>0}\right\}$.
Proof. We proceed by induction on k.
Note that

$$
\omega(i)= \begin{cases}0 & \text { if } i=0 \\ l+1 & \text { if } i=2 l+1 \text { is odd } \\ k+l & \text { if } i=2 l \text { is even }\end{cases}
$$

Using this, we can describe ε_{i} as follows.

$$
\varepsilon_{i}= \begin{cases}\theta_{k+l+1}+\theta_{l+1}-\theta_{k+1}-\theta_{0} & \text { if } i=2 l+1 \text { is odd } \tag{3.4}\\ \theta_{k+l}+\theta_{l+1}-\theta_{k+1}-\theta_{0} & \text { if } i=2 l \text { is even }\end{cases}
$$

Note that

$$
\varepsilon_{0}=\theta_{1}-\theta_{0}, \quad \varepsilon_{2 k}=\theta_{2 k}-\theta_{0}
$$

Corollary 3.5. For $\theta \in \mathfrak{C}$, every θ-stable G-constellation \mathcal{F} is generated by ρ_{0} and ρ_{k+1}, i.e., every subsheaf of \mathcal{F} whose support contains ρ_{0} and ρ_{k+1} is equal to \mathcal{F}.

Proof. From the discussion above, we find that $\theta\left(\rho_{i}\right)<0$ if and only if $i=$ 0 or $k+1$, because θ is a positive linear combination of ε_{i}. Assume that \mathcal{F} has a subsheaf \mathcal{G} with $\operatorname{supp} \mathcal{G}$ containing ρ_{0} and ρ_{k+1}. Since we have $\theta(\mathcal{G}) \leq 0$, from the stability, we have $\mathcal{F}=\mathcal{G}$.

3.2. Admissible G-brickset

For the toric cones in (3.1), we define corresponding G-prebricks.
Proposition 3.6. For the cones in (3.1), the following G-prebricks $\Gamma_{l}, \Gamma_{i}^{\triangle}$, and Γ_{i}^{∇} correspond to $\sigma_{l}, \sigma_{i}^{\triangle}$, and σ_{i}^{∇}, respectively:
(i) $\Gamma_{1}=\left\{1, z, \ldots, z^{2 k}\right\}$.
(ii) $\Gamma_{2 i+1}=\left\{\begin{array}{c}1, z, \ldots, z^{k-i}, y, \ldots, y^{i-1}, y^{i} \\ \frac{y^{i+1}}{z^{k-i}}, \frac{y^{i+1}}{z^{k-i-1}}, \ldots, y^{i+1}, \frac{y^{i+2}}{z^{k-i}}, \ldots, \frac{y^{l-1}}{z^{k-i}}\end{array}\right\}$.
(iii) $\Gamma_{2 i}=\left\{\begin{array}{c}1, z, \ldots, z^{k-i}, y, \ldots, y^{i-1}, y^{i} \\ \frac{z^{k-i+1}}{y^{i-1}}, \frac{z^{k-i+1}}{y^{i-2}}, \ldots, z^{k-i+1}, \frac{z^{k-i+2}}{y^{i-1}}, \ldots, \frac{z^{2 k-2 i+1}}{y^{i-1}}\end{array}\right\}$.
(iv) $\Gamma_{i}^{\triangle}=\left\{\begin{array}{cccccc}1, & x, & y, & \ldots, & y^{k-i}, & y^{k-i+1} \\ z, & x z, & x y, & \ldots, & x y^{k-i} \\ \ldots, & \ldots & & \end{array}\right\}$.
(v) $\Gamma_{i}^{\nabla}=\left\{\begin{array}{cccccc}1, & x, & x^{2}, & x^{3} & \ldots, & x^{2 k-2 i+1}, \\ z, & x z & & & & x^{2 k-2 i+2} \\ \ldots, & \ldots & & & \\ z^{i-1}, & x z^{i-1}\end{array}\right.$

Proof. The proof goes through a direct calculation (see Proposition 5.3.2 in [5]). Here we show it for $\Gamma_{2 i}$. First note that

$$
\langle B(\Gamma)\rangle=\left\langle y^{i+1}, y z, \frac{z^{k-i+2}}{y^{i-2}}, \frac{z^{2 k-2 i+2}}{y^{i-1}}, x, \frac{x z^{k-i+1}}{y^{i-1}}\right\rangle .
$$

Thus the semigroup $S(\Gamma)$ is generated by

$$
\frac{y^{2 i}}{z^{2 k-2 i+1}}, y z, \frac{z^{2 k-2 i+2}}{y^{2 i-1}}, \frac{x y^{i-1}}{z^{k-i+1}}, \frac{x z^{k-i+1}}{y^{i}}
$$

and then $S(\Gamma)=\mathbb{C}\left[\frac{y^{2 i}}{z^{2 k-2 i+1}}, \frac{z^{2 k-2 i+2}}{y^{2 i-1}}, \frac{x y^{i-1}}{z^{k-i+1}}\right]=\mathbb{C}\left[\sigma_{2 i}^{\vee} \cap M\right]$. Thus the assertion is proved.

Remark 3.7. Note that Γ_{i}^{\triangle} and Γ_{i}^{∇} are Nakamura G-graphs.

3.3. G-constellations and representations of the McKay quiver

It is well-known that the language of G-constellations is the same as the language of the McKay quiver representations with relations. In this section, we briefly review the McKay quiver representations for our group G of type $\frac{1}{2 k+1}(k+1,1,2 k)$ with $r=2 k+1$.

The vertex set of the McKay quiver for G is in one-to-one correspondence with G^{\vee}. We denote ρ_{i} the weight of y^{i} for each $0 \leq i \leq 2 k$. The quiver has $3(2 k+1)$ arrows as follows. For each $0 \leq i \leq 2 k$, there are three arrows x_{i}, y_{i}, z_{i} which are arrows from ρ_{i} to $\rho_{i+k+1}, \rho_{i+1}, \rho_{i-1}$, respectively.

We impose the following commutation relations:

$$
\left\{\begin{array}{l}
x_{i} y_{i+k+1}-y_{i} x_{i+1}, \tag{3.8}\\
x_{i} z_{i+k+1}-z_{i} x_{i-1}, \\
y_{i} z_{i+1}-z_{i} y_{i-1}
\end{array}\right.
$$

Note that by definition we are only interested in the representations of dimension vector $\left(1^{2 k+1}\right)$. After fixing a basis on the vector spaces attached to vertices, the McKay quiver representations are in one-to-one correspondence with points of the affine scheme

$$
\operatorname{Rep}_{G}:=\operatorname{Spec} \mathbb{C}\left[x_{0}, \ldots, x_{2 k}, y_{0}, \ldots, y_{2 k}, z_{0}, \ldots, z_{2 k}\right] / I_{G}
$$

where I_{G} is the ideal generated by the commutation relations (3.8).
The torus $\mathbf{T}=\left(\mathbb{C}^{\times}\right)^{3}$ acts on Rep_{G} by

$$
\left(t_{1}, t_{2}, t_{3}\right) \cdot\left(x_{i}, y_{i}, z_{i}\right)=\left(t_{1} x_{i}, t_{2} y_{i}, t_{3} z_{i}\right)
$$

This action corresponds to the action on G-constellations. There is a torus $T=$ $\left(\mathbb{C}^{*}\right)^{3 r} / \mathbb{C}^{*}$ acting on Rep_{G} as change of basis on quiver representations. Using this data, the GIT yields the moduli space $\overline{\mathcal{M}_{\theta}}$ of θ-semistable G-constellations as $\mathcal{M}_{\theta} \simeq \operatorname{Rep}_{G} / /{ }_{\theta} T$.
Proposition 3.9. Let G be the group of type $\frac{1}{2 k+1}(k+1,1,2 k)$ and θ generic parameter. Then each component of \mathcal{M}_{θ} has a \mathbf{T}-fixed point.

Proof. Let G be the group of type $\frac{1}{2 k+1}(k+1,1,2 k)$ and θ generic parameter. By GIT construction in [8], the moduli space \mathcal{M}_{θ} is projective over $\overline{\mathcal{M}_{0}}$, where $\overline{\mathcal{M}_{0}}$ is the moduli space of 0 -semistable objects with $0=(0,0, \ldots, 0)$ the trivial parameter in Θ. In general, \mathbb{C}^{3} / G is an irreducible component of $\overline{\mathcal{M}_{0}}$. In Appendix of [5], it is proved that $\overline{\mathcal{M}_{0}}$ is irreducible. Thus we have a \mathbf{T}-equivariant projective morphism

$$
\pi: \mathcal{M}_{\theta} \rightarrow \overline{\mathcal{M}_{0}} \simeq \mathbb{C}^{3} / G, \quad \mathcal{F} \mapsto[\operatorname{supp} \mathcal{F}]
$$

where $[\operatorname{supp} \mathcal{F}]$ is the G-orbit which \mathcal{F} supports on.
Let \mathcal{M} be an irreducible component of \mathcal{M}_{θ}. Since Y_{θ} has a T-fixed point, we may assume \mathcal{M} is not the birational component. This means that \mathcal{M} consists of θ-stable G-constellations supported on the origin. Indeed, if \mathcal{F}
supports on a free G-orbit, then it is on the birational component Y_{θ} (see [6, Proposition 2.23]). By restricting the morphism π to \mathcal{M}, we know that \mathcal{M} is projective over a point. Thus \mathcal{M} itself is a projective scheme with \mathbf{T}-action. By Borel's fixed point theorem, we get the existence of a T-fixed point on \mathcal{M}.

Remark 3.10. In conclusion, each θ-stable G-prebrick yields a T-fixed point in the moduli space \mathcal{M}_{θ}. Even though each connected component of \mathcal{M}_{θ} has a T-fixed point, in general, it is not clear that each \mathbf{T}-fixed point corresponds to a G-prebrick.

4. The irreducibility

Theorem 4.1. Let G be the group of type $\frac{1}{2 k+1}(k+1,1,2 k)$. Let θ be in the admissible chamber \mathfrak{C}. The moduli space \mathcal{M}_{θ} of θ-stable G-constellations is irreducible. Therefore the economic resolution Y of \mathbb{C}^{3} / G is isomorphic to \mathcal{M}_{θ}.

First, a simple calculation shows the following lemma.
Lemma 4.2. For the group of type $\frac{1}{2 k+1}(k+1,1,2 k)$, the G-invariant monomials are generated by

- $1, y z$,
- $y^{2 k+1}, x y^{k}, x^{3} y^{k-1}, x^{5} y^{k-2}, \ldots, x^{2 k-1} y, x^{2 k+1}$, and
- $z^{2 k+1}, x z^{k+1}, x^{2} z$.

4.1. Cases $x_{0} \neq 0$

First note that G-constellations generated by ρ_{0} are all G-clusters. From Corollary 3.5 , for $\theta \in \mathfrak{C}, \theta$-stable G-constellations with $x_{0} \neq 0$ must be G clusters. Therefore we have a one-to-one correspondence between the set

$$
\left\{\theta \text {-stable } \mathbf{T} \text {-invariant } G \text {-constellations with } x_{0} \neq 0\right\}
$$

and the set

$$
\{\theta \text {-stable Nakamura } G \text {-graphs containing } x\} \text {. }
$$

By classifying all Nakamura G-graphs containing x, we show all such G-graphs are in Proposition 3.6.
Lemma 4.3. Let G be a group of type $\frac{1}{2 k+1}(k+1,1,2 k)$. If a Nakamura G-graph Γ contains x, then the following hold.
(i) $y z \notin \Gamma, x^{2} z \notin \Gamma, y^{k+1} \notin \Gamma, z^{k} \notin \Gamma$.
(ii) if $y \in \Gamma$, then $x^{2} \notin \Gamma$.

Moreover, suppose that Γ is θ-stable for $\theta \in \mathfrak{C}$. If $z^{l} \in \Gamma$, then $x z^{l} \in \Gamma$.
Proof. Since the weight of $y z$ and $x^{2} z$ is the same as $\mathbf{1}$ and the weight of y^{k+1} and z^{k} is the same as x, by the definition of G-graphs, (i) follows. Similarly the y and x^{2} have the same weight so Γ cannot contain both.

Suppose that a θ-stable Γ contains z^{l} for $1 \leq l \leq k-1$. In (3.4), the $\varepsilon_{2 k+1-2 l}$ is

$$
\theta_{2 k-l+1}+\theta_{k-l+1}-\theta_{k+1}-\theta_{0}
$$

By stability, there should be a non-zero path from ρ_{k+1} to $\rho_{2 k+1-l}$ or ρ_{k+1-l}. Note that Γ contains z^{l} which is the weight $\rho_{2 k+1-l}$. Since x does not divides z^{l}, there is no non-zero path from ρ_{k+1} to $\rho_{2 k+1-l}$. Therefore there is a non-zero path from ρ_{k+1} to ρ_{k+1-l}.

Assume that the genuine monomial $x^{\alpha} y^{\beta} z^{\gamma}$ gives the non-zero path. Then $x^{\alpha+1} y^{\beta} z^{\gamma} \in \Gamma$. Since $y z \notin \Gamma$, either β or γ is zero. The weight of $x^{\alpha+1} y^{\beta} z^{\gamma} \in \Gamma$ is ρ_{k+1-l} so if $\gamma=0$, then $\beta=2 k+1-l \geq k+1$. This contradicts to $y^{k+1} \notin \Gamma$. Thus we can conclude that

$$
\alpha=0, \beta=0, \gamma=l
$$

Proposition 4.4. With the notation above, if a Nakamura G-graph Γ containing x is θ-stable, then Γ is one of the Γ_{i}^{\triangle} and Γ_{i}^{∇} in Proposition 3.6.

Proof. Let Γ be a θ-stable G-graph containing x. There exists $1 \leq i \leq k$ such that $1, z, z^{2}, \ldots, z^{i-1} \in \Gamma$ but $z^{i} \notin \Gamma$. By Lemma 4.3, this induces that

$$
x, x z, x z^{2}, \ldots, x z^{i-1} \in \Gamma, \text { and } x z^{i} \notin \Gamma .
$$

We have two cases: (i) $y \in \Gamma$, (ii) $y \notin \Gamma$.
Case (i). In this case, by Lemma 4.3, $x^{2} \notin \Gamma$. Since $x z^{i-1} \in \Gamma$ is of weight $\rho_{k+1-i+1}$, the monomial $y^{k+1-i+1}$ of the same weight cannot be in Γ. Since we need $(2 k+1)$ monomials, only possible case is:

$$
\Gamma=\left\{\begin{array}{cc}
y^{k-i+1} & \\
y^{k-i}, & x y^{k-i} \\
\cdots, & \cdots \\
y, & x y \\
1, & x \\
z, & x z \\
\cdots, & \cdots \\
z^{i-1}, & x z^{i-1}
\end{array}\right\} .
$$

This is Γ_{i}^{\triangle} in Proposition 3.6.
Case (ii). In this case, Γ consists of monomials in x, z. We need $(2 k+1)$ monomials, but $z^{i} \notin \Gamma$ and $x^{2} z \notin \Gamma$. By the definition of G-graphs, there is only one choice:

$$
\Gamma=\left\{\begin{array}{cccccc}
1, & x, & x^{2}, & x^{3} & \ldots, & x^{2 k-2 i+1}, \\
z, & x z & & & & x^{2 k-2 i+2} \\
\ldots, & \ldots & & & & \\
z^{i-1}, & x z^{i-1} & & & &
\end{array}\right\} .
$$

This is equal to Γ_{i}^{∇} in Proposition 3.6.

4.2. Cases $x_{0}=0$

It is known that the moduli spaces of θ-stable G-constellations for $\frac{1}{2 k+1}(1,2 k)$ is irreducible if θ is generic (see e.g. [1,2]). Thus it is enough to show that the condition $x_{0}=0$ implies $x_{i}=0$ for all i.

From Proposition 3.3, recall that for the permutation

$$
\omega=\left(\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & \cdots & 2 k-2 & 2 k-1 & 2 k \\
0 & 1 & k+1 & 2 & k+2 & \cdots & 2 k-1 & k & 2 k
\end{array}\right)
$$

the admissible chamber \mathfrak{C} is the open cone generated by

$$
\varepsilon_{i}:=\sum_{j=0}^{i-1}\left(\theta_{\omega(j)+1}-\theta_{\omega(j)}\right)
$$

for $i=1, \ldots, 2 k($ see (3.4)).
In this section, we mainly use the language of the McKay quiver representations in Section 3.3.

Rules of the Game.

- Since G-invariant monomials act trivially on T-invariant G-constellations, any path induced by a G-invariant monomial except $\mathbf{1}$ is zero. In particular, the action of $y z$ is zero. This means in terms of the McKay quiver representations, if y_{i} is non-zero, then z_{i+1} is zero.
- If a path induced by a monomial $x^{\alpha} y^{\beta} z^{\gamma}$ from ρ_{i} is non-zero, then so are any path induced by $x^{\alpha} y^{\beta} z^{\gamma}$ from ρ_{i} by the commutative relation (3.8). For example, suppose that $x y$ induces a non-zero path from ρ_{0}. This means $x_{0} y_{k+1}$ is non-zero. From the commutative relation, $y_{0} x_{1}$ is non-zero as well.
- The commutative relation can be used to show a linear map is zero. For example, if $x_{0}=0$ and $y_{0} \neq 0$, then from $x_{0} y_{k+1}=y_{0} x_{1}$ we have $x_{1}=0$.
- Suppose that there is a nonzero path from ρ_{i} to ρ_{j} which is induced by $x^{\alpha} y^{\beta} z^{\gamma}$. If $x_{i}=0$, which is a linear map from ρ_{i}, then $\alpha=0$. If y_{j-1}, which is to ρ_{j}, then $\beta=0$.

Remark 4.5. Note that the admissible chamber \mathfrak{C} is a chamber in the GIT parameter space Θ. This means that θ-stable objects are the same for any $\theta \in \mathfrak{C}$. Since the admissible chamber \mathfrak{C} is the open cone generated by ε_{i} 's, i.e., $\mathfrak{C}=\left\{a_{1} \varepsilon_{1}+\cdots+a_{2 k} \varepsilon_{2 k} \mid a_{i} \in \mathbb{R}_{>0}\right\}$, we conclude that it is enough to consider the stability with respect to ε_{j} for all j. Indeed, for each j, we may consider $\theta=\sum a_{i} \varepsilon_{i}$ with $a_{i}=1$ for $i \neq j$ and $a_{j} \gg 0$, then θ is equivalent to ε_{j}.

Let $0 \leq j \leq 2 k+1$ be the smallest number such that the linear map $y_{\omega(j)}$ is zero. We show that there is a unique \mathbf{T}-invariant θ-stable G-constellation for each j.
4.2.1. $\boldsymbol{j}=\mathbf{0}$. This means $y_{0}=0$. The first vector ε_{1} is equal to

$$
\theta_{1}-\theta_{0}
$$

By stability, there should be a non-zero path from ρ_{0} to ρ_{1}. Since $x_{0}=y_{0}=0$, the path should be induced by $z^{2 k}$. Here the path induced by $z^{2 k}$ is the linear map from ρ_{0} to ρ_{1} given by

$$
z_{0} z_{2 k} z_{2 k-1} \cdots z_{3} z_{2}
$$

which is non-zero. From Rule, $x_{i}=y_{i}=0$ for each i. This corresponds to the G-prebrick Γ_{1} in Proposition 3.6.
4.2.2. $\boldsymbol{j}=1$. This means $y_{1}=0$ and y_{0} is non-zero. The second vector ε_{2} is

$$
\theta_{2}-\theta_{0}
$$

By stability, there should be a non-zero path from ρ_{0} to ρ_{2}. Suppose that the path is given by $x^{\alpha} y^{\beta} z^{\gamma}$. Since $x_{0}=0$ and $y_{1}=0$, we have $\alpha=0$ and $\beta \leq 1$. Thus $\gamma \geq 1$ so $\beta=0$. Therefore the path is given by $z^{2 k-1}$ which induces a non-zero linear map

$$
z_{0} z_{2 k} z_{2 k-1} \cdot z_{3}
$$

This corresponds to Γ_{2} in Proposition 3.6.
4.2.3. $\boldsymbol{j}=\mathbf{2}$. This means y_{0}, y_{1} are non-zero and y_{k+1} is zero. The 3rd ray ε_{3} is

$$
\theta_{k+2}-\theta_{k+1}+\theta_{2}-\theta_{0}
$$

Here we have $x_{1}=x_{2}=z_{1}=z_{2}=0$.
Suppose that there is a non-zero path from ρ_{k+1} to ρ_{k+2}. This path should be given by a monomial of weight ρ_{1}. Since y_{k+1} is zero, the candidates are

$$
x^{2}, x z^{k}, z^{2 k}
$$

However, as we have $x_{1}=z_{1}=0, x^{2}$ and $x z^{k}$ cannot induce non-zero paths from ρ_{k+1}. Thus the non-zero path is induced by $z^{2 k}$ which is equal to

$$
z_{k+1} z_{k} z_{k-1} \cdots z_{1} z_{0} \cdots z_{k+3}
$$

But it contradicts to $z_{1}=0$.
By stability with the discussion above, there should be two non-zero paths \mathbf{p} from ρ_{0} to ρ_{k+2} and \mathbf{q} from ρ_{k+1} to ρ_{2}, respectively. Since we have $x_{0}=$ $y_{k+1}=0$, the path \mathbf{p} should be given by z^{k-1}. Since $y_{k+1}=0=x_{1}=0$, the path \mathbf{q} is given by z^{k-1}. This corresponds to Γ_{3} in Proposition 3.6.
4.2.4. $j=2 l+1$ for $0<l<k$. Note that $\omega(j)=l+1$. The condition $j=2 l+1$ means that

$$
y_{0}, y_{1}, y_{2}, \ldots, y_{l} \neq 0, \quad y_{k+1}, y_{k+2}, \ldots, y_{k+l} \neq 0, \quad y_{l+1}=0
$$

This implies that many linear maps are zero, for example

$$
x_{0}=x_{1}=x_{2}=\cdots=x_{l}=x_{l+1}=z_{k+2}=z_{k+3}=\cdots=z_{k+l+1}=0
$$

The $(j+1)$-th vector ε_{j+1} is

$$
\theta_{k+l+1}+\theta_{l+2}-\theta_{k+1}-\theta_{0}
$$

Suppose that there is a non-zero path from ρ_{0} to ρ_{l+2}. Since $y_{l+1}=x_{0}=0$, we have the path is given by $z^{2 k-l-1}$, which is equal to

$$
z_{0} z_{2 k} z_{2 k-1} \cdots z_{k+2} z_{k+1} \cdots z_{l+3}
$$

It contradicts to $z_{k+2}=0$.
By stability, we have two non-zero paths \mathbf{p} from ρ_{0} to ρ_{k+1+l} and \mathbf{q} from ρ_{k+1} to ρ_{l+2}, respectively. Since x_{0} is zero, the path \mathbf{p} is given by y^{k+1+l} or z^{k-l}. From the fact $y_{l+1}=0$, we have \mathbf{p} is given by z^{k-l}. Assume that the path \mathbf{q} is given by $x^{\alpha} y^{\beta} z^{\gamma}$. Since $y_{l+1}=0$ and $x_{k+1} x_{1}=0$, we have $\beta=0$ and $\alpha \leq 1$. If $\alpha=1$, then from $x_{k+1} z_{1}=0$, we have $\gamma=0$. This means \mathbf{q} is given by x, which cannot reach ρ_{l+2}. From this, we have the path \mathbf{q} is given by z^{k-l-1}. This corresponds to Γ_{j+1} in Proposition 3.6.
4.2.5. $\boldsymbol{j}=2 \boldsymbol{l}$ for $\mathbf{0}<\boldsymbol{l}<\boldsymbol{k}$. Note that $\omega(j)=k+l$. The condition $j=2 l$ means that

$$
y_{0}, y_{1}, y_{2}, \ldots, y_{l} \neq 0, \quad y_{k+1}, y_{k+2}, \ldots, y_{k+l-1} \neq 0, \quad y_{k+l}=0
$$

This implies that many linear maps are zero, for example

$$
x_{0}=x_{1}=x_{2}=\cdots=x_{l}=x_{l+1}=z_{k+2}=z_{k+3}=\cdots=z_{k+l}=0
$$

The $(j+1)$-th vector ε_{j+1} is

$$
\theta_{k+l+1}+\theta_{l+1}-\theta_{k+1}-\theta_{0}
$$

Suppose that there is a non-zero path induced by $x^{m_{1}} y^{m_{2}} z^{m_{3}}$ from ρ_{k+1} to ρ_{k+l+1}. Since both y_{k+l} and x_{1} are zero, we have $m_{2}=0$ and $m_{1} \leq 1$. From $x_{k+1} z_{1}=0$, if $m_{1}=1$, then $m_{3}=0$. This means the path is given by x, which is to ρ_{1}. Thus we have $m_{1}=0$ and the path is given by $z^{2 k-l}$, which is equal to

$$
z_{k+1} z_{k} z_{k-1} \cdots z_{2} z_{1} z_{0} \cdots z_{k+l+2}
$$

This should be zero because $z_{1}=0$.
By stability, there exist two non-zero paths \mathbf{p} from ρ_{0} to ρ_{k+l+1} and \mathbf{q} from ρ_{k+1} to ρ_{l+1}, respectively. First note that the path \mathbf{p} should be induced by z^{k-l} because $x_{0}=y_{k+l}=0$. From this, we can conclude that $x_{k+l+1}=0$; otherwise the monomial $x z^{k-l}$ induces a non-zero path from ρ_{0} to ρ_{l+1}, which contradicts to $x_{0}=0$. Since $x_{k+l+1}=0$, we have that \mathbf{q} is induced by y^{k+l+1}
or z^{k-l}. From the fact $y_{k+l}=0$, we get \mathbf{q} is given by z^{k-l}. This corresponds to Γ_{j+1} in Proposition 3.6.
4.2.6. $\boldsymbol{j}=\mathbf{2 k}$. This means that all y_{i} 's are non-zero except $y_{2 k}$. This shows that all $x_{i}=z_{i}=0$ for all i. This corresponds to $\Gamma_{2 k+1}$ in Proposition 3.6.

4.3. Conclusion

Through this section, we have seen that \mathbf{T}-invariant θ-stable G-constellations are all listed in Proposition 3.6. In other words, \mathbf{T}-invariant θ-stable G constellations lie over the birational component Y_{θ}. In Proposition 4.10 in [6], it is shown that the birational component is a connected component. Therefore we can conclude that $Y_{\theta}=\mathcal{M}_{\theta}$, which means the moduli space \mathcal{M}_{θ} is irreducible. This proves Theorem 4.1.
Remark 4.6. Theorem 4.1 was first stated in [5] without rigorous proof. Note that without Proposition 3.9, the irreducibility of \mathcal{M}_{θ} does not follow from the classification of \mathbf{T}-invariant θ-stable G-constellations.

References

[1] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. https://doi.org/ 10.1090/S0894-0347-01-00368-X
[2] A. Craw and A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259-307. https://doi.org/10.1215/ S0012-7094-04-12422-4
[3] A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179-198. https://doi.org/10.1112/plms/pdm009
[4] V. I. Danilov, Birational geometry of three-dimensional toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 971-982, 1135.
[5] S.-J. Jung, McKay quivers and terminal quotient singularities in dimension 3, PhD thesis, University of Warwick, 2014.
[6] S.-J. Jung, Terminal quotient singularities in dimension three via variation of GIT, J. Algebra 468 (2016), 354-394. https://doi.org/10.1016/j.jalgebra.2016.08.032
[7] O. Kȩdzierski, Danilov's resolution and representations of the McKay quiver, Tohoku Math. J. (2) 66 (2014), no. 3, 355-375. https://doi.org/10. 2748/tmj/1412783203
[8] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. https://doi.org/10.1093/qmath/45.4.515
[9] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757-779.
[10] M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345-414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

Seung-Jo Jung
Department of Mathematics Education, and
Institute of Pure and Applied Mathematics
Jeonbuk National University
Jeonju 54896, Korea
Email address: seungjo@jbnu.ac.kr

