Bull. Korean Math. Soc. **59** (2022), No. 6, pp. 1409–1422 https://doi.org/10.4134/BKMS.b210797 pISSN: 1015-8634 / eISSN: 2234-3016

IRREDUCIBILITY OF THE MODULI SPACE FOR THE QUOTIENT SINGULARITY $\frac{1}{2k+1}(k+1,1,2k)$

SEUNG-JO JUNG

ABSTRACT. A 3-fold quotient terminal singularity is of the type $\frac{1}{r}(b, 1, -1)$ with gcd(r, b) = 1. In [6], it is proved that the economic resolution of a 3-fold terminal quotient singularity is isomorphic to a distinguished component of a moduli space \mathcal{M}_{θ} of θ -stable *G*-constellations for a suitable θ . This paper proves that each connected component of the moduli space \mathcal{M}_{θ} has a torus fixed point and classifies all torus fixed points on \mathcal{M}_{θ} . By product, we show that for $\frac{1}{2k+1}(k+1,1,-1)$ case the moduli space \mathcal{M}_{θ} is irreducible.

1. Introduction

Let $G \subset \operatorname{GL}_n(\mathbb{C})$ be a finite group. The group G acts on \mathbb{C}^n naturally. If the quotient variety $X := \mathbb{C}^n/G$ is singular, we may consider the resolution of singularities $Y \to X$. A natural question in this line is whether Y has a modular interpretation in terms of G-equivariant objects on \mathbb{C}^n . A G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^n is called a G-constellation if $\operatorname{H}^0(\mathcal{F})$ is isomorphic to $\mathbb{C}[G]$ as G-representations. The moduli spaces of G-constellations can be constructed via King's stability [8] where the stability parameter space

$$\Theta = \left\{ \theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G]) = 0 \right\},\$$

where R(G) is the representation ring of G. For fixed θ , a G-constellation is said to be θ -(*semi*) stable if $\theta(\mathcal{G}) > 0$ ($\theta(\mathcal{G}) \ge 0$) for every non-zero proper Gequivariant subsheaf $\mathcal{G} \subset \mathcal{F}$. We say a parameter θ is generic if all θ -semistable objects are θ -stable. The moduli space \mathcal{M}_{θ} of θ -stable G-constellations has a special irreducible component Y_{θ} .

It is known that the 3-fold terminal quotient singularity is the quotient singularity of type $\frac{1}{r}(b, 1, r-1)$ with gcd(b, r) = 1, which means that the quotient by

$$G = \{ \operatorname{diag}(\epsilon^{b}, \epsilon, \epsilon^{-1}) \mid \epsilon^{r} = 1 \} \subset \operatorname{GL}_{3}(\mathbb{C})$$

©2022 Korean Mathematical Society

Received November 2, 2021; Revised June 21, 2022; Accepted July 15, 2022. 2010 Mathematics Subject Classification. 14B05,14J17.

Key words and phrases. Terminal quotient singularities, economic resolutions.

This work was partially supported by NRF grant (NRF-2021R1C1C1004097) of the Korean government.

(see e.g. [10]). This quotient singularity $X := \mathbb{C}^3/G$ has an economic resolution $\varphi \colon Y \to X$ whose discrepancy is minimal. More precisely, it satisfies

$$K_Y = \varphi^*(K_X) + \sum_{1 \le i < r} \frac{i}{r} E_i,$$

where E_i 's are prime exceptional divisors. In [7], Kędzierski proved that there is a parameter θ such that the normalisation of Y_{θ} is isomorphic to Y. Further, it is proved that the component Y_{θ} is actually smooth and a connected component of \mathcal{M}_{θ} in [6]. It is quite natural to ask whether \mathcal{M}_{θ} is irreducible or not. On the other hand, since G is abelian, there is a natural torus $\mathbf{T} = (\mathbb{C}^{\times})^3$ -action on \mathcal{M}_{θ} .

In this paper, we first prove that for the group of the type $\frac{1}{r}(b, 1, -1)$ with gcd(r, b) = 1 and for generic parameter θ each connected component of \mathcal{M}_{θ} has a **T**-fixed point. Thus if we show that every **T**-fixed point lies over Y_{θ} , then we can conclude that $\mathcal{M}_{\theta} = Y_{\theta}$ (see Proposition 3.9). Using this result, we focus on a partial case where G is of type $\frac{1}{2k+1}(k+1,1,2k)$. In this case, we can classify all **T**-invariant G-constellations and show that they lie over Y_{θ} . This implies that \mathcal{M}_{θ} is irreducible so the economic resolution Y is isomorphic to \mathcal{M}_{θ} itself, which was stated in [5] without complete proofs.

This paper is organized as follows. We begin with Section 2 to recall general theory of G-constellations and their moduli spaces. Section 3 is devoted to apply the result in [6] to our case. Then in Section 4, we state the irreducibility theorem and prove it.

Acknowledgement. First of all, I would like to thank Miles Reid for fruitful discussion where lots of ideas in this paper stem from. In addition, I would like to thank the referee for many valuable comments and corrections.

2. G-constellations and G-prebricks

2.1. Moduli spaces of G-constellations

This section reviews G-constellations and their moduli spaces (see e.g. [2,3, 8]).

Let G be a finite diagonal cyclic subgroup of $GL_3(\mathbb{C})$.

Definition 2.1. A *G*-constellation is a *G*-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^3 with $\mathrm{H}^0(\mathcal{F})$ isomorphic to the regular representation $\mathbb{C}[G]$ of *G*.

Define $R(G) := \bigoplus_{\rho \in \operatorname{Irr} G} \mathbb{Z} \rho$. For a stability parameter $\theta \in \Theta$ where

$$\Theta = \left\{ \theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \, \middle| \, \theta \left(\mathbb{C}[G] \right) = 0 \right\},\$$

we say that:

- (i) a G-constellation \mathcal{F} is θ -semistable if $\theta(\mathcal{G}) \geq 0$ for every non-zero proper G-equivariant subsheaf of \mathcal{F} ;
- (ii) a G-constellation \mathcal{F} is θ -stable if $\theta(\mathcal{G}) > 0$ for every non-zero proper G-equivariant subsheaf of \mathcal{F} ;

(iii) θ is generic if every θ -semistable object is θ -stable.

For generic θ , a fine moduli space \mathcal{M}_{θ} of θ -stable *G*-constellations exists as a quasi-projective scheme by King [8]. Furthermore the moduli space \mathcal{M}_{θ} has a unique irreducible component Y_{θ} which is a not-necessarily-normal toric variety birational to the quotient variety \mathbb{C}^n/G by Craw–Maclagan–Thomas [3].

Definition 2.2. The irreducible component Y_{θ} in \mathcal{M}_{θ} is called the *birational* component of \mathcal{M}_{θ} .

Note that via the $\mathbf{T} = (\mathbb{C}^{\times})^n$ -action on \mathbb{C}^n , the algebraic torus \mathbf{T} naturally acts on the moduli space \mathcal{M}_{θ} . The \mathbf{T} -fixed points on \mathcal{M}_{θ} play a crucial role in the proof of irreduciblity of \mathcal{M}_{θ} .

Definition 2.3. For a *G*-equivariant sheaf \mathcal{G} , the *support*, denoted by supp (\mathcal{G}) , of \mathcal{G} is the set of irreducible representations which appear in $\mathrm{H}^{0}(\mathcal{G})$.

2.2. *G*-prebricks and T-fixed points on \mathcal{M}_{θ}

This section introduces G-prebricks and their correspondence with **T**-fixed points on \mathcal{M}_{θ} .

Let G be the group of type $\frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$, i.e.,

$$G = \langle \operatorname{diag}(\epsilon^{\alpha_1}, \epsilon^{\alpha_2}, \epsilon^{\alpha_3}) \mid \epsilon^r = 1 \rangle \subset \operatorname{GL}_3(\mathbb{C}).$$

Define the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r}(\alpha_1, \alpha_2, \alpha_3)$$

is an overlattice of $\overline{L} := \mathbb{Z}^3$. We identify the dual lattices $\overline{M} := \operatorname{Hom}_{\mathbb{Z}}(\overline{L}, \mathbb{Z})$ and $M := \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$ with Laurent monomials and *G*-invariant Laurent monomials, respectively. The embedding of *G* into the torus $\mathbf{T} = (\mathbb{C}^{\times})^3 \subset \operatorname{GL}_3(\mathbb{C})$ induces a surjective homomorphism

wt:
$$\overline{M} \longrightarrow G^{\vee}$$
,

where G^{\vee} denotes the character group $G^{\vee} := \text{Hom}(G, \mathbb{C}^{\times})$ of G. Let $\overline{M}_{>0}$ denote genuine monomials in \overline{M} , i.e.,

$$\overline{M}_{>0} = \{ x^{m_1} y^{m_2} z^{m_3} \in \overline{M} \mid m_i \ge 0 \text{ for all } i \}.$$

For a subset $A \subset \mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$, let $\langle A \rangle$ denote the $\mathbb{C}[x, y, z]$ -submodule of $\mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$ generated by A.

2.2.1. G-clusters and G-graphs. For a G-invariant subscheme Z, if \mathcal{O}_Z is a G-constellation, we call it a G-cluster.

Suppose that a *G*-cluster \mathcal{O}_Z is **T**-invariant. This means that *Z* is given by a monomial ideal I_Z . In this case, we define:

$$\Gamma := \{ x^{m_1} y^{m_2} z^{m_3} \in \overline{M}_{\ge 0} \mid x^{m_1} y^{m_2} z^{m_3} \notin I \}.$$

Then Γ gives a basis of $\mathrm{H}^{0}(\mathcal{O}_{Z})$. From the properties of Γ , the following definition is natural (due to Nakamura [9]).

Definition 2.4. A (*Nakamura*) *G*-graph is a subset of genuine monomials in $\overline{M}_{>0}$ such that:

- (i) the monomial $\mathbf{1}$ is in Γ ;
- (ii) for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ of weight ρ , i.e., wt: $\Gamma \to G^{\vee}$ is bijective;
- (iii) if $\mathbf{p}' \cdot \mathbf{p} \in \Gamma$ for $\mathbf{p}, \mathbf{p}' \in \overline{M}_{\geq 0}$, then $\mathbf{p} \in \Gamma$.

From the argument above, we have a one-to-one correspondence between the set of G-graphs and the set of \mathbf{T} -invariant G-clusters. Thus for classifying all \mathbf{T} -invariant G-clusters, we can classify all G-graphs.

Similarly, for G-constellations, we define the following (see [5, 6]).

Definition 2.5. A *G*-prebrick Γ is a subset of Laurent monomials in $\mathbb{C}[x^{\pm}, y^{\pm}, z^{\pm}]$ such that:

- (i) the monomial $\mathbf{1}$ is in Γ ;
- (ii) for each weight $\rho \in G^{\vee}$, there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ of weight ρ , i.e., wt: $\Gamma \to G^{\vee}$ is bijective;
- (iii) if $\mathbf{p}' \cdot \mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{p}, \mathbf{p}' \in \overline{M}_{\geq 0}$, then $\mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$;
- (iv) the set Γ is *connected* in the sense that for any element \mathbf{m}_{ρ} , there is a (fractional) path in Γ from \mathbf{m}_{ρ} to **1** whose steps consist of multiplying or dividing by one of x, y, z.

For a *G*-prebrick Γ , we define $\operatorname{wt}_{\Gamma} \colon \overline{M} \to \Gamma$ by $\operatorname{wt}_{\Gamma} := (\operatorname{wt})^{-1} \circ \operatorname{wt}$. Thus $\operatorname{wt}_{\Gamma}(\mathbf{m})$ is the unique element \mathbf{m}_{ρ} in Γ of the same weight as $\mathbf{m} \in \overline{M}$.

Let Γ be a $G\text{-}\mathrm{prebrick.}$ Define

$$C(\Gamma) := \langle \Gamma \rangle / \langle B(\Gamma) \rangle,$$

where

$$B(\Gamma) := \{ x \cdot \mathbf{m}, y \cdot \mathbf{m}, z \cdot \mathbf{m} \mid \mathbf{m} \in \Gamma \} \setminus \Gamma.$$

Since $B(\Gamma)$ is generated by monomials, the module $C(\Gamma)$ is a torus invariant *G*-constellation corresponding to a **T**-fixed point in the moduli space by [6]. Here the *G*-predict Γ forms a monomial \mathbb{C} -basis of the *G*-constellation $C(\Gamma)$.

Remark 2.6. In [6], it is shown that every **T**-fixed point on the birational component Y_{θ} corresponds to a *G*-prebrick. However, we do not know if there is a *G*-prebrick corresponding to a **T**-fixed point on $\mathcal{M}_{\theta} \setminus Y_{\theta}$.

Definition 2.7. A *G*-prebrick Γ is said to be θ -stable if the torus invariant *G*-constellation $C(\Gamma)$ is θ -stable.

For a *G*-prebrick $\Gamma = {\mathbf{m}_{\rho}}, S(\Gamma) \subset M$ is the subsemigroup generated by $\frac{\mathbf{p} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{p} \cdot \mathbf{m}_{\rho})}$ for all $\mathbf{p} \in \overline{M}_{\geq 0}, \mathbf{m}_{\rho} \in \Gamma$. In [6], it is proved that $S(\Gamma)$ is finitely generated so it induces an affine toric variety.

Proposition 2.8 ([6, Lemma 2.11]). For a *G*-prebrick Γ , the semigroup $S(\Gamma)$ is generated by $\frac{\mathbf{b}}{\operatorname{wt}_{\Gamma}(\mathbf{b})}$ for all $\mathbf{b} \in B(\Gamma)$ as a semigroup. In particular, $S(\Gamma)$ is finitely generated as a semigroup.

Definition 2.9. For a *G*-prebrick Γ and a cone σ , we say that Γ corresponds to σ if $S(\Gamma) = \mathbb{C}[\sigma^{\vee} \cap M]$.

3. 3-fold terminal quotient singularities and G-constellations

This section reviews the results in [6] about 3-fold terminal quotient singularities. For simplicity, we restrict us for the type of $\frac{1}{2k+1}(k+1,1,2k)$ which is the main case of this paper. In this section, G is the group of type $\frac{1}{r}(k+1,1,2k)$ with r = 2k + 1. Mainly we apply the method in [6] to this case directly.

The quotient singularity $X := \mathbb{C}^3/G$ does not have crepant resolutions but X has a certain toric resolution introduced by Danilov [4] (see also [10]). Consider the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r}(k+1, 1, 2k).$$

For each $1 \leq i \leq 2k$, let $v_i := \frac{1}{2k+1}(-ki, i, r-i) \in L$ where — denotes the residue modulo r. The *economic resolution* of \mathbb{C}^3/G is the toric variety obtained by the consecutive weighted blowups at $v_2, v_4, \ldots, v_{2k}, v_1, v_3, \ldots, v_{2k-1}$ from \mathbb{C}^3/G . Each discrepancy of the economic resolution is in the interval (0, 1) (see [10]).

Let Σ be the toric fan of the economic resolution Y of $X = \mathbb{C}^3/G$. In the fan Σ , we have the following (4k + 1) 3-dimensional cones:

(3.1)
$$\begin{cases} \sigma_i = \operatorname{Cone}(e_1, v_{i-1}, v_i) & \text{for } 1 \le i \le 2k+1, \\ \sigma_i^{\bigtriangleup} = \operatorname{Cone}(v_{2i-1}, v_{2i-2}, v_{2i}) & \text{for } 1 \le i \le k, \\ \sigma_i^{\bigtriangledown} = \operatorname{Cone}(e_2, v_{2i-2}, v_{2i}) & \text{for } 1 \le i \le k. \end{cases}$$

Example 3.2. Let G be the group of type $\frac{1}{7}(4, 1, 6)$. The fan of the economic resolution of the quotient variety is shown in Figure 3.1.

For the moduli description of the economic resolutions, we need to define

- (i) an *admissible G-brickset*, and
- (ii) an *admissible chamber* in Θ .

3.1. Stability parameter space

The index set $I := \{0, 1, \ldots, 2k\}$ is identified with $\mathbb{Z}/(2k+1)\mathbb{Z}$. For each $i \in I$, we define $\theta_i \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q})$ by $\theta_i(\rho_j) = \delta_{ij}$. Here ρ_j denotes the irreducible representation of weight j. Note that $\theta_i - \theta_j$ is an element of the stability parameter space Θ . Applying [6] to this case, we have the following.

Proposition 3.3 (cf. [5,6]). Let us consider the group G of type $\frac{1}{2k+1}(k+1,1,2k)$. For the permutation

$$\omega = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & \dots & 2k-2 & 2k-1 & 2k \\ 0 & 1 & k+1 & 2 & k+2 & \dots & 2k-1 & k & 2k \end{pmatrix},$$

S.-J. JUNG

FIGURE 3.1. Fan of the economic resolution for $\frac{1}{7}(4,1,6)$

the admissible chamber \mathfrak{C} is the open cone generated by

$$\varepsilon_i := \sum_{j=0}^{i-1} \left(\theta_{\omega(j)+1} - \theta_{\omega(j)} \right)$$

for $i = 1, \ldots, 2k$, *i.e.*, $\mathfrak{C} = \{a_1 \varepsilon_1 + \cdots + a_{2k} \varepsilon_{2k} \mid a_i \in \mathbb{R}_{>0}\}.$

Proof. We proceed by induction on k.

Note that

$$\omega(i) = \begin{cases} 0 & \text{if } i = 0, \\ l+1 & \text{if } i = 2l+1 \text{ is odd}, \\ k+l & \text{if } i = 2l \text{ is even.} \end{cases}$$

Using this, we can describe ε_i as follows.

(3.4)
$$\varepsilon_i = \begin{cases} \theta_{k+l+1} + \theta_{l+1} - \theta_{k+1} - \theta_0 & \text{if } i = 2l+1 \text{ is odd,} \\ \theta_{k+l} + \theta_{l+1} - \theta_{k+1} - \theta_0 & \text{if } i = 2l \text{ is even.} \end{cases}$$

Note that

$$\varepsilon_0 = \theta_1 - \theta_0, \quad \varepsilon_{2k} = \theta_{2k} - \theta_0.$$

Corollary 3.5. For $\theta \in \mathfrak{C}$, every θ -stable *G*-constellation \mathcal{F} is generated by ρ_0 and ρ_{k+1} , i.e., every subsheaf of \mathcal{F} whose support contains ρ_0 and ρ_{k+1} is equal to \mathcal{F} .

Proof. From the discussion above, we find that $\theta(\rho_i) < 0$ if and only if i = 0 or k + 1, because θ is a positive linear combination of ε_i . Assume that \mathcal{F} has a subsheaf \mathcal{G} with supp \mathcal{G} containing ρ_0 and ρ_{k+1} . Since we have $\theta(\mathcal{G}) \leq 0$, from the stability, we have $\mathcal{F} = \mathcal{G}$.

3.2. Admissible G-brickset

For the toric cones in (3.1), we define corresponding *G*-prebricks.

Proposition 3.6. For the cones in (3.1), the following *G*-prebricks Γ_l , Γ_i^{\triangle} , and Γ_i^{∇} correspond to σ_l , σ_i^{\triangle} , and σ_i^{∇} , respectively:

$$\begin{array}{ll} \text{(i)} & \Gamma_{1} = \left\{1, z, \dots, z^{2k}\right\}. \\ \text{(ii)} & \Gamma_{2i+1} = \left\{\begin{array}{c}1, z, \dots, z^{k-i}, y, \dots, y^{i-1}, y^{i} \\ \frac{y^{i+1}}{z^{k-i}}, \frac{y^{i+1}}{z^{k-i-1}}, \dots, y^{i+1}, \frac{y^{i+2}}{z^{k-i}}, \dots, \frac{y^{l-1}}{z^{k-i}}\right\}. \\ \text{(iii)} & \Gamma_{2i} = \left\{\begin{array}{c}1, z, \dots, z^{k-i}, y, \dots, y^{i-1}, y^{i} \\ \frac{z^{k-i+1}}{y^{i-1}}, \frac{z^{k-i+1}}{y^{i-2}}, \dots, z^{k-i+1}, \frac{z^{k-i+2}}{y^{i-1}}, \dots, \frac{z^{2k-2i+1}}{y^{i-1}}\right\}. \\ \text{(iv)} & \Gamma_{i}^{\triangle} = \left\{\begin{array}{c}1, & x, & y, & \dots, & y^{k-i}, & y^{k-i+1} \\ z, & xz, & xy, & \dots, & xy^{k-i} \\ \dots, & \dots & \\ z^{i-1}, & xz^{i-1}\end{array}\right\}. \\ \text{(v)} & \Gamma_{i}^{\nabla} = \left\{\begin{array}{c}1, & x, & x^{2}, & x^{3} & \dots, & x^{2k-2i+1}, & x^{2k-2i+2} \\ z, & xz \\ \dots, & \dots & \\ z^{i-1}, & xz^{i-1}\end{array}\right\}. \end{array} \right\}$$

Proof. The proof goes through a direct calculation (see Proposition 5.3.2 in [5]). Here we show it for Γ_{2i} . First note that

$$\langle B(\Gamma) \rangle = \langle y^{i+1}, yz, \frac{z^{k-i+2}}{y^{i-2}}, \frac{z^{2k-2i+2}}{y^{i-1}}, x, \frac{xz^{k-i+1}}{y^{i-1}} \rangle.$$

Thus the semigroup $S(\Gamma)$ is generated by

$$\frac{y^{2i}}{z^{2k-2i+1}}, yz, \frac{z^{2k-2i+2}}{y^{2i-1}}, \frac{xy^{i-1}}{z^{k-i+1}}, \frac{xz^{k-i+1}}{y^i},$$

and then $S(\Gamma) = \mathbb{C}[\frac{y^{2i}}{z^{2k-2i+1}}, \frac{z^{2k-2i+2}}{y^{2i-1}}, \frac{xy^{i-1}}{z^{k-i+1}}] = \mathbb{C}[\sigma_{2i}^{\vee} \cap M]$. Thus the assertion is proved.

Remark 3.7. Note that Γ_i^{\triangle} and $\Gamma_i^{\bigtriangledown}$ are Nakamura *G*-graphs.

3.3. G-constellations and representations of the McKay quiver

It is well-known that the language of *G*-constellations is the same as the language of the McKay quiver representations with relations. In this section, we briefly review the McKay quiver representations for our group *G* of type $\frac{1}{2k+1}(k+1,1,2k)$ with r = 2k+1.

The vertex set of the McKay quiver for G is in one-to-one correspondence with G^{\vee} . We denote ρ_i the weight of y^i for each $0 \le i \le 2k$. The quiver has 3(2k+1) arrows as follows. For each $0 \le i \le 2k$, there are three arrows x_i, y_i, z_i which are arrows from ρ_i to $\rho_{i+k+1}, \rho_{i+1}, \rho_{i-1}$, respectively.

We impose the following commutation relations:

(3.8)
$$\begin{cases} x_i y_{i+k+1} - y_i x_{i+1}, \\ x_i z_{i+k+1} - z_i x_{i-1}, \\ y_i z_{i+1} - z_i y_{i-1}. \end{cases}$$

Note that by definition we are only interested in the representations of dimension vector (1^{2k+1}) . After fixing a basis on the vector spaces attached to vertices, the McKay quiver representations are in one-to-one correspondence with points of the affine scheme

$$\operatorname{Rep}_G := \operatorname{Spec} \mathbb{C}[x_0, \dots, x_{2k}, y_0, \dots, y_{2k}, z_0, \dots, z_{2k}]/I_G,$$

where I_G is the ideal generated by the commutation relations (3.8). The torus $\mathbf{T} = (\mathbb{C}^{\times})^3$ acts on Rep_G by

 $(t_1, t_2, t_3) \cdot (x_i, y_i, z_i) = (t_1 x_i, t_2 y_i, t_3 z_i).$

This action corresponds to the action on *G*-constellations. There is a torus $T = (\mathbb{C}^*)^{3r}/\mathbb{C}^*$ acting on Rep_G as change of basis on quiver representations. Using this data, the GIT yields the moduli space $\overline{\mathcal{M}}_{\theta}$ of θ -semistable *G*-constellations as $\mathcal{M}_{\theta} \simeq \operatorname{Rep}_G /\!\!/_{\theta} T$.

Proposition 3.9. Let G be the group of type $\frac{1}{2k+1}(k+1,1,2k)$ and θ generic parameter. Then each component of \mathcal{M}_{θ} has a **T**-fixed point.

Proof. Let G be the group of type $\frac{1}{2k+1}(k+1,1,2k)$ and θ generic parameter. By GIT construction in [8], the moduli space \mathcal{M}_{θ} is projective over $\overline{\mathcal{M}_0}$, where $\overline{\mathcal{M}_0}$ is the moduli space of 0-semistable objects with $0 = (0, 0, \ldots, 0)$ the trivial parameter in Θ . In general, \mathbb{C}^3/G is an irreducible component of $\overline{\mathcal{M}_0}$. In Appendix of [5], it is proved that $\overline{\mathcal{M}_0}$ is irreducible. Thus we have a **T**-equivariant projective morphism

$$\pi \colon \mathcal{M}_{\theta} \to \overline{\mathcal{M}_0} \simeq \mathbb{C}^3/G, \quad \mathcal{F} \mapsto [\operatorname{supp} \mathcal{F}],$$

where $[\operatorname{supp} \mathcal{F}]$ is the *G*-orbit which \mathcal{F} supports on.

Let \mathcal{M} be an irreducible component of \mathcal{M}_{θ} . Since Y_{θ} has a **T**-fixed point, we may assume \mathcal{M} is not the birational component. This means that \mathcal{M} consists of θ -stable *G*-constellations supported on the origin. Indeed, if \mathcal{F}

supports on a free *G*-orbit, then it is on the birational component Y_{θ} (see [6, Proposition 2.23]). By restricting the morphism π to \mathcal{M} , we know that \mathcal{M} is projective over a point. Thus \mathcal{M} itself is a projective scheme with **T**-action. By Borel's fixed point theorem, we get the existence of a **T**-fixed point on \mathcal{M} .

Remark 3.10. In conclusion, each θ -stable *G*-prebrick yields a **T**-fixed point in the moduli space \mathcal{M}_{θ} . Even though each connected component of \mathcal{M}_{θ} has a **T**-fixed point, in general, it is not clear that each **T**-fixed point corresponds to a *G*-prebrick.

4. The irreducibility

Theorem 4.1. Let G be the group of type $\frac{1}{2k+1}(k+1,1,2k)$. Let θ be in the admissible chamber \mathfrak{C} . The moduli space \mathcal{M}_{θ} of θ -stable G-constellations is irreducible. Therefore the economic resolution Y of \mathbb{C}^3/G is isomorphic to \mathcal{M}_{θ} .

First, a simple calculation shows the following lemma.

Lemma 4.2. For the group of type $\frac{1}{2k+1}(k+1,1,2k)$, the *G*-invariant monomials are generated by

• 1, yz, • $y^{2k+1}, xy^k, x^3y^{k-1}, x^5y^{k-2}, \dots, x^{2k-1}y, x^{2k+1}$, and • z^{2k+1}, xz^{k+1}, x^2z .

4.1. Cases $x_0 \neq 0$

First note that G-constellations generated by ρ_0 are all G-clusters. From Corollary 3.5, for $\theta \in \mathfrak{C}$, θ -stable G-constellations with $x_0 \neq 0$ must be Gclusters. Therefore we have a one-to-one correspondence between the set

 $\{\theta$ -stable **T**-invariant *G*-constellations with $x_0 \neq 0\}$

and the set

 $\{\theta$ -stable Nakamura *G*-graphs containing $x\}$.

By classifying all Nakamura G-graphs containing x, we show all such G-graphs are in Proposition 3.6.

Lemma 4.3. Let G be a group of type $\frac{1}{2k+1}(k+1,1,2k)$. If a Nakamura G-graph Γ contains x, then the following hold.

(i) $yz \notin \Gamma$, $x^2z \notin \Gamma$, $y^{k+1} \notin \Gamma$, $z^k \notin \Gamma$. (ii) if $y \in \Gamma$, then $x^2 \notin \Gamma$.

Moreover, suppose that Γ is θ -stable for $\theta \in \mathfrak{C}$. If $z^l \in \Gamma$, then $xz^l \in \Gamma$.

Proof. Since the weight of yz and x^2z is the same as **1** and the weight of y^{k+1} and z^k is the same as x, by the definition of G-graphs, (i) follows. Similarly the y and x^2 have the same weight so Γ cannot contain both.

S.-J. JUNG

Suppose that a θ -stable Γ contains z^l for $1 \leq l \leq k-1$. In (3.4), the $\varepsilon_{2k+1-2l}$ is

$$\theta_{2k-l+1} + \theta_{k-l+1} - \theta_{k+1} - \theta_0.$$

By stability, there should be a non-zero path from ρ_{k+1} to ρ_{2k+1-l} or ρ_{k+1-l} . Note that Γ contains z^l which is the weight ρ_{2k+1-l} . Since x does not divides z^l , there is no non-zero path from ρ_{k+1} to ρ_{2k+1-l} . Therefore there is a non-zero path from ρ_{k+1} to ρ_{k+1-l} .

Assume that the genuine monomial $x^{\alpha}y^{\beta}z^{\gamma}$ gives the non-zero path. Then $x^{\alpha+1}y^{\beta}z^{\gamma} \in \Gamma$. Since $yz \notin \Gamma$, either β or γ is zero. The weight of $x^{\alpha+1}y^{\beta}z^{\gamma} \in \Gamma$ is ρ_{k+1-l} so if $\gamma = 0$, then $\beta = 2k+1-l \ge k+1$. This contradicts to $y^{k+1} \notin \Gamma$. Thus we can conclude that

$$\alpha = 0, \ \beta = 0, \ \gamma = l.$$

Proposition 4.4. With the notation above, if a Nakamura G-graph Γ containing x is θ -stable, then Γ is one of the Γ_i^{\triangle} and $\Gamma_i^{\bigtriangledown}$ in Proposition 3.6.

Proof. Let Γ be a θ -stable *G*-graph containing *x*. There exists $1 \leq i \leq k$ such that $1, z, z^2, \ldots, z^{i-1} \in \Gamma$ but $z^i \notin \Gamma$. By Lemma 4.3, this induces that

$$x, xz, xz^2, \dots, xz^{i-1} \in \Gamma$$
, and $xz^i \notin \Gamma$.

We have two cases: (i) $y \in \Gamma$, (ii) $y \notin \Gamma$.

Case (i). In this case, by Lemma 4.3, $x^2 \notin \Gamma$. Since $xz^{i-1} \in \Gamma$ is of weight $\rho_{k+1-i+1}$, the monomial $y^{k+1-i+1}$ of the same weight cannot be in Γ . Since we need (2k+1) monomials, only possible case is:

$$\Gamma = \begin{cases} y^{k-i+1} \\ y^{k-i}, & xy^{k-i} \\ \dots, & \dots \\ y, & xy \\ 1, & x \\ z, & xz \\ \dots, & \dots \\ z^{i-1}, & xz^{i-1} \end{cases}.$$

This is Γ_i^{\triangle} in Proposition 3.6.

Case (ii). In this case, Γ consists of monomials in x, z. We need (2k + 1) monomials, but $z^i \notin \Gamma$ and $x^2 z \notin \Gamma$. By the definition of *G*-graphs, there is only one choice:

$$\Gamma = \left\{ \begin{array}{cccccc} 1, & x, & x^2, & x^3 & \dots, & x^{2k-2i+1}, & x^{2k-2i+2} \\ z, & xz & & & \\ \dots, & \dots & & & \\ z^{i-1}, & xz^{i-1} & & & & \end{array} \right\}$$

This is equal to Γ_i^{∇} in Proposition 3.6.

4.2. Cases $x_0 = 0$

It is known that the moduli spaces of θ -stable *G*-constellations for $\frac{1}{2k+1}(1, 2k)$ is irreducible if θ is generic (see e.g. [1,2]). Thus it is enough to show that the condition $x_0 = 0$ implies $x_i = 0$ for all *i*.

From Proposition 3.3, recall that for the permutation

$$\omega = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & \cdots & 2k-2 & 2k-1 & 2k \\ 0 & 1 & k+1 & 2 & k+2 & \cdots & 2k-1 & k & 2k \end{pmatrix},$$

the admissible chamber \mathfrak{C} is the open cone generated by

$$\varepsilon_i := \sum_{j=0}^{i-1} \left(\theta_{\omega(j)+1} - \theta_{\omega(j)} \right)$$

for $i = 1, \ldots, 2k$ (see (3.4)).

In this section, we mainly use the language of the McKay quiver representations in Section 3.3.

Rules of the Game.

• Since G-invariant monomials act trivially on **T**-invariant G-constellations, any path induced by a G-invariant monomial except **1** is zero. In particular, the action of yz is zero. This means in terms of the McKay quiver representations, if y_i is non-zero, then z_{i+1} is zero.

• If a path induced by a monomial $x^{\alpha}y^{\beta}z^{\gamma}$ from ρ_i is non-zero, then so are any path induced by $x^{\alpha}y^{\beta}z^{\gamma}$ from ρ_i by the commutative relation (3.8). For example, suppose that xy induces a non-zero path from ρ_0 . This means x_0y_{k+1} is non-zero. From the commutative relation, y_0x_1 is non-zero as well.

• The commutative relation can be used to show a linear map is zero. For example, if $x_0 = 0$ and $y_0 \neq 0$, then from $x_0y_{k+1} = y_0x_1$ we have $x_1 = 0$.

• Suppose that there is a nonzero path from ρ_i to ρ_j which is induced by $x^{\alpha}y^{\beta}z^{\gamma}$. If $x_i = 0$, which is a linear map from ρ_i , then $\alpha = 0$. If y_{j-1} , which is to ρ_j , then $\beta = 0$.

Remark 4.5. Note that the admissible chamber \mathfrak{C} is a chamber in the GIT parameter space Θ . This means that θ -stable objects are the same for any $\theta \in \mathfrak{C}$. Since the admissible chamber \mathfrak{C} is the open cone generated by ε_i 's, i.e., $\mathfrak{C} = \{a_1 \varepsilon_1 + \cdots + a_{2k} \varepsilon_{2k} \mid a_i \in \mathbb{R}_{>0}\}$, we conclude that it is enough to consider the stability with respect to ε_j for all j. Indeed, for each j, we may consider $\theta = \sum a_i \varepsilon_i$ with $a_i = 1$ for $i \neq j$ and $a_j \gg 0$, then θ is equivalent to ε_j .

Let $0 \le j \le 2k + 1$ be the smallest number such that the linear map $y_{\omega(j)}$ is zero. We show that there is a unique **T**-invariant θ -stable *G*-constellation for each *j*.

S.-J. JUNG

4.2.1. j = 0. This means $y_0 = 0$. The first vector ε_1 is equal to

$$\theta_1 - \theta_0$$
.

By stability, there should be a non-zero path from ρ_0 to ρ_1 . Since $x_0 = y_0 = 0$, the path should be induced by z^{2k} . Here the path induced by z^{2k} is the linear map from ρ_0 to ρ_1 given by

$$z_0 z_{2k} z_{2k-1} \cdots z_3 z_2$$

which is non-zero. From Rule, $x_i = y_i = 0$ for each *i*. This corresponds to the *G*-prebrick Γ_1 in Proposition 3.6.

4.2.2. j = 1. This means $y_1 = 0$ and y_0 is non-zero. The second vector ε_2 is

$$\theta_2 - \theta_0.$$

By stability, there should be a non-zero path from ρ_0 to ρ_2 . Suppose that the path is given by $x^{\alpha}y^{\beta}z^{\gamma}$. Since $x_0 = 0$ and $y_1 = 0$, we have $\alpha = 0$ and $\beta \leq 1$. Thus $\gamma \geq 1$ so $\beta = 0$. Therefore the path is given by z^{2k-1} which induces a non-zero linear map

$$z_0 z_{2k} z_{2k-1} \cdots z_3.$$

This corresponds to Γ_2 in Proposition 3.6.

4.2.3. j = 2. This means y_0, y_1 are non-zero and y_{k+1} is zero. The 3rd ray ε_3 is

$$\theta_{k+2} - \theta_{k+1} + \theta_2 - \theta_0.$$

Here we have $x_1 = x_2 = z_1 = z_2 = 0$.

Suppose that there is a non-zero path from ρ_{k+1} to ρ_{k+2} . This path should be given by a monomial of weight ρ_1 . Since y_{k+1} is zero, the candidates are

$$x^2, xz^k, z^{2k}.$$

However, as we have $x_1 = z_1 = 0$, x^2 and xz^k cannot induce non-zero paths from ρ_{k+1} . Thus the non-zero path is induced by z^{2k} which is equal to

$$z_{k+1}z_kz_{k-1}\cdots z_1z_0\cdots z_{k+3}.$$

But it contradicts to $z_1 = 0$.

By stability with the discussion above, there should be two non-zero paths **p** from ρ_0 to ρ_{k+2} and **q** from ρ_{k+1} to ρ_2 , respectively. Since we have $x_0 = y_{k+1} = 0$, the path **p** should be given by z^{k-1} . Since $y_{k+1} = 0 = x_1 = 0$, the path **q** is given by z^{k-1} . This corresponds to Γ_3 in Proposition 3.6.

4.2.4. j = 2l + 1 for 0 < l < k. Note that $\omega(j) = l + 1$. The condition j = 2l + 1 means that

 $y_0, y_1, y_2, \dots, y_l \neq 0, \quad y_{k+1}, y_{k+2}, \dots, y_{k+l} \neq 0, \quad y_{l+1} = 0.$

This implies that many linear maps are zero, for example

 $x_0 = x_1 = x_2 = \dots = x_l = x_{l+1} = z_{k+2} = z_{k+3} = \dots = z_{k+l+1} = 0.$

The (j+1)-th vector ε_{j+1} is

$$\theta_{k+l+1} + \theta_{l+2} - \theta_{k+1} - \theta_0.$$

Suppose that there is a non-zero path from ρ_0 to ρ_{l+2} . Since $y_{l+1} = x_0 = 0$, we have the path is given by z^{2k-l-1} , which is equal to

$$z_0 z_{2k} z_{2k-1} \cdots z_{k+2} z_{k+1} \cdots z_{l+3}.$$

It contradicts to $z_{k+2} = 0$.

By stability, we have two non-zero paths \mathbf{p} from ρ_0 to ρ_{k+1+l} and \mathbf{q} from ρ_{k+1} to ρ_{l+2} , respectively. Since x_0 is zero, the path \mathbf{p} is given by y^{k+1+l} or z^{k-l} . From the fact $y_{l+1} = 0$, we have \mathbf{p} is given by z^{k-l} . Assume that the path \mathbf{q} is given by $x^{\alpha}y^{\beta}z^{\gamma}$. Since $y_{l+1} = 0$ and $x_{k+1}x_1 = 0$, we have $\beta = 0$ and $\alpha \leq 1$. If $\alpha = 1$, then from $x_{k+1}z_1 = 0$, we have $\gamma = 0$. This means \mathbf{q} is given by x, which cannot reach ρ_{l+2} . From this, we have the path \mathbf{q} is given by z^{k-l-1} . This corresponds to Γ_{j+1} in Proposition 3.6.

4.2.5. j = 2l for 0 < l < k. Note that $\omega(j) = k + l$. The condition j = 2l means that

$$y_1, y_2, \dots, y_l \neq 0, \quad y_{k+1}, y_{k+2}, \dots, y_{k+l-1} \neq 0, \quad y_{k+l} = 0$$

This implies that many linear maps are zero, for example

$$x_0 = x_1 = x_2 = \dots = x_l = x_{l+1} = z_{k+2} = z_{k+3} = \dots = z_{k+l} = 0$$

The (j+1)-th vector ε_{j+1} is

 y_0

$$\theta_{k+l+1} + \theta_{l+1} - \theta_{k+1} - \theta_0.$$

Suppose that there is a non-zero path induced by $x^{m_1}y^{m_2}z^{m_3}$ from ρ_{k+1} to ρ_{k+l+1} . Since both y_{k+l} and x_1 are zero, we have $m_2 = 0$ and $m_1 \leq 1$. From $x_{k+1}z_1 = 0$, if $m_1 = 1$, then $m_3 = 0$. This means the path is given by x, which is to ρ_1 . Thus we have $m_1 = 0$ and the path is given by z^{2k-l} , which is equal to

$$z_{k+1}z_kz_{k-1}\cdots z_2z_1z_0\cdots z_{k+l+2}.$$

This should be zero because $z_1 = 0$.

By stability, there exist two non-zero paths \mathbf{p} from ρ_0 to ρ_{k+l+1} and \mathbf{q} from ρ_{k+1} to ρ_{l+1} , respectively. First note that the path \mathbf{p} should be induced by z^{k-l} because $x_0 = y_{k+l} = 0$. From this, we can conclude that $x_{k+l+1} = 0$; otherwise the monomial xz^{k-l} induces a non-zero path from ρ_0 to ρ_{l+1} , which contradicts to $x_0 = 0$. Since $x_{k+l+1} = 0$, we have that \mathbf{q} is induced by y^{k+l+1}

or z^{k-l} . From the fact $y_{k+l} = 0$, we get **q** is given by z^{k-l} . This corresponds to Γ_{j+1} in Proposition 3.6.

4.2.6. j = 2k. This means that all y_i 's are non-zero except y_{2k} . This shows that all $x_i = z_i = 0$ for all *i*. This corresponds to Γ_{2k+1} in Proposition 3.6.

4.3. Conclusion

Through this section, we have seen that **T**-invariant θ -stable *G*-constellations are all listed in Proposition 3.6. In other words, **T**-invariant θ -stable *G*constellations lie over the birational component Y_{θ} . In Proposition 4.10 in [6], it is shown that the birational component is a connected component. Therefore we can conclude that $Y_{\theta} = \mathcal{M}_{\theta}$, which means the moduli space \mathcal{M}_{θ} is irreducible. This proves Theorem 4.1.

Remark 4.6. Theorem 4.1 was first stated in [5] without rigorous proof. Note that without Proposition 3.9, the irreducibility of \mathcal{M}_{θ} does not follow from the classification of **T**-invariant θ -stable *G*-constellations.

References

- T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. https://doi.org/ 10.1090/S0894-0347-01-00368-X
- [2] A. Craw and A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259–307. https://doi.org/10.1215/ S0012-7094-04-12422-4
- [3] A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179–198. https://doi.org/10.1112/plms/pdm009
- [4] V. I. Danilov, Birational geometry of three-dimensional toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 971–982, 1135.
- [5] S.-J. Jung, McKay quivers and terminal quotient singularities in dimension 3, PhD thesis, University of Warwick, 2014.
- [6] S.-J. Jung, Terminal quotient singularities in dimension three via variation of GIT, J. Algebra 468 (2016), 354-394. https://doi.org/10.1016/j.jalgebra.2016.08.032
- [7] O. Kędzierski, Danilov's resolution and representations of the McKay quiver, Tohoku Math. J. (2) 66 (2014), no. 3, 355–375. https://doi.org/10.2748/tmj/1412783203
- [8] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. https://doi.org/10.1093/qmath/45.4.515
- [9] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757–779.
- [10] M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

SEUNG-JO JUNG DEPARTMENT OF MATHEMATICS EDUCATION, AND INSTITUTE OF PURE AND APPLIED MATHEMATICS JEONBUK NATIONAL UNIVERSITY JEONJU 54896, KOREA Email address: seungjo@jbnu.ac.kr