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IRREDUCIBILITY OF THE MODULI SPACE FOR

THE QUOTIENT SINGULARITY 1
2k+1

(k + 1, 1, 2k)

Seung-Jo Jung

Abstract. A 3-fold quotient terminal singularity is of the type 1
r

(b, 1,

−1) with gcd(r, b) = 1. In [6], it is proved that the economic resolution

of a 3-fold terminal quotient singularity is isomorphic to a distinguished
component of a moduli space Mθ of θ-stable G-constellations for a suit-

able θ. This paper proves that each connected component of the moduli

space Mθ has a torus fixed point and classifies all torus fixed points on
Mθ. By product, we show that for 1

2k+1
(k + 1, 1,−1) case the moduli

space Mθ is irreducible.

1. Introduction

Let G ⊂ GLn(C) be a finite group. The group G acts on Cn naturally. If the
quotient variety X := Cn/G is singular, we may consider the resolution of sin-
gularities Y → X. A natural question in this line is whether Y has a modular
interpretation in terms of G-equivariant objects on Cn. A G-equivariant coher-
ent sheaf F on Cn is called a G-constellation if H0(F) is isomorphic to C[G] as
G-representations. The moduli spaces of G-constellations can be constructed
via King’s stability [8] where the stability parameter space

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣ θ (C[G]) = 0
}
,

where R(G) is the representation ring of G. For fixed θ, a G-constellation is
said to be θ-(semi) stable if θ(G) > 0 (θ(G) ≥ 0) for every non-zero proper G-
eqiuivariant subsheaf G ⊂ F . We say a parameter θ is generic if all θ-semistable
objects are θ-stable. The moduli space Mθ of θ-stable G-constellations has a
special irreducible component Yθ.

It is known that the 3-fold terminal quotient singularity is the quotient
singularity of type 1

r (b, 1, r − 1) with gcd(b, r) = 1, which means that the
quotient by

G = {diag(εb, ε, ε−1) | εr = 1} ⊂ GL3(C)
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1410 S.-J. JUNG

(see e.g. [10]). This quotient singularity X := C3/G has an economic resolution
ϕ : Y → X whose discrepancy is minimal. More precisely, it satisfies

KY = ϕ∗(KX) +
∑

1≤i<r

i

r
Ei,

where Ei’s are prime exceptional divisors. In [7], K ↪edzierski proved that there is
a parameter θ such that the normalisation of Yθ is isomorphic to Y . Further, it
is proved that the component Yθ is actually smooth and a connected component
of Mθ in [6]. It is quite natural to ask whether Mθ is irreducible or not. On
the other hand, since G is abelian, there is a natural torus T = (C×)3-action
on Mθ.

In this paper, we first prove that for the group of the type 1
r (b, 1,−1) with

gcd(r, b) = 1 and for generic parameter θ each connected component ofMθ has
a T-fixed point. Thus if we show that every T-fixed point lies over Yθ, then we
can conclude that Mθ = Yθ (see Proposition 3.9). Using this result, we focus
on a partial case where G is of type 1

2k+1 (k + 1, 1, 2k). In this case, we can
classify all T-invariant G-constellations and show that they lie over Yθ. This
implies that Mθ is irreducible so the economic resolution Y is isomorphic to
Mθ itself, which was stated in [5] without complete proofs.

This paper is organized as follows. We begin with Section 2 to recall general
theory of G-constellations and their moduli spaces. Section 3 is devoted to
apply the result in [6] to our case. Then in Section 4, we state the irreducibility
theorem and prove it.

Acknowledgement. First of all, I would like to thank Miles Reid for fruitful
discussion where lots of ideas in this paper stem from. In addition, I would like
to thank the referee for many valuable comments and corrections.

2. G-constellations and G-prebricks

2.1. Moduli spaces of G-constellations

This section reviews G-constellations and their moduli spaces (see e.g. [2,3,
8]).

Let G be a finite diagonal cyclic subgroup of GL3(C).

Definition 2.1. A G-constellation is a G-equivariant coherent sheaf F on C3

with H0(F) isomorphic to the regular representation C[G] of G.

Define R(G) :=
⊕

ρ∈IrrG Z ρ. For a stability parameter θ ∈ Θ where

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣ θ (C[G]) = 0
}
,

we say that:

(i) a G-constellation F is θ-semistable if θ(G) ≥ 0 for every non-zero
proper G-eqiuivariant subsheaf of F ;

(ii) a G-constellation F is θ-stable if θ(G) > 0 for every non-zero proper
G-eqiuivariant subsheaf of F ;
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(iii) θ is generic if every θ-semistable object is θ-stable.

For generic θ, a fine moduli spaceMθ of θ-stable G-constellations exists as a
quasi-projective scheme by King [8]. Furthermore the moduli space Mθ has a
unique irreducible component Yθ which is a not-necessarily-normal toric variety
birational to the quotient variety Cn/G by Craw–Maclagan–Thomas [3].

Definition 2.2. The irreducible component Yθ in Mθ is called the birational
component of Mθ.

Note that via the T = (C×)n-action on Cn, the algebraic torus T naturally
acts on the moduli spaceMθ. The T-fixed points onMθ play a crucial role in
the proof of irreduciblity of Mθ.

Definition 2.3. For a G-equivariant sheaf G, the support, denoted by supp(G),
of G is the set of irreducible representations which appear in H0(G).

2.2. G-prebricks and T-fixed points on Mθ

This section introduces G-prebricks and their correspondence with T-fixed
points on Mθ.

Let G be the group of type 1
r (α1, α2, α3), i.e.,

G = 〈diag(εα1 , εα2 , εα3)
∣∣ εr = 1〉 ⊂ GL3(C).

Define the lattice

L = Z3 + Z · 1

r
(α1, α2, α3)

is an overlattice of L := Z3. We identify the dual lattices M := HomZ(L,Z) and
M := HomZ(L,Z) with Laurent monomials and G-invariant Laurent monomi-
als, respectively. The embedding of G into the torus T = (C×)3 ⊂ GL3(C)
induces a surjective homomorphism

wt: M −→ G∨,

where G∨ denotes the character group G∨ := Hom(G,C×) of G.
Let M≥0 denote genuine monomials in M , i.e.,

M≥0 = {xm1ym2zm3 ∈M
∣∣mi ≥ 0 for all i}.

For a subset A ⊂ C[x±, y±, z±], let 〈A〉 denote the C[x, y, z]-submodule of
C[x±, y±, z±] generated by A.

2.2.1. G-clusters and G-graphs. For a G-invariant subscheme Z, if OZ is
a G-constellation, we call it a G-cluster.

Suppose that a G-cluster OZ is T-invariant. This means that Z is given by
a monomial ideal IZ . In this case, we define:

Γ := {xm1ym2zm3 ∈M≥0 | xm1ym2zm3 6∈ I}.

Then Γ gives a basis of H0(OZ). From the properties of Γ, the following defi-
nition is natural (due to Nakamura [9]).
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Definition 2.4. A (Nakamura) G-graph is a subset of genuine monomials in
M≥0 such that:

(i) the monomial 1 is in Γ;
(ii) for each weight ρ ∈ G∨, there exists a unique Laurent monomial mρ ∈

Γ of weight ρ, i.e., wt : Γ→ G∨ is bijective;
(iii) if p′ · p ∈ Γ for p,p′ ∈M≥0, then p ∈ Γ.

From the argument above, we have a one-to-one correspondence between the
set of G-graphs and the set of T-invariant G-clusters. Thus for classifying all
T-invariant G-clusters, we can classify all G-graphs.

Similarly, for G-constellations, we define the following (see [5, 6]).

Definition 2.5. A G-prebrick Γ is a subset of Laurent monomials in C[x±, y±,
z±] such that:

(i) the monomial 1 is in Γ;
(ii) for each weight ρ ∈ G∨, there exists a unique Laurent monomial mρ ∈

Γ of weight ρ, i.e., wt : Γ→ G∨ is bijective;
(iii) if p′ · p ·mρ ∈ Γ for mρ ∈ Γ and p,p′ ∈M≥0, then p ·mρ ∈ Γ;
(iv) the set Γ is connected in the sense that for any element mρ, there is a

(fractional) path in Γ from mρ to 1 whose steps consist of multiplying
or dividing by one of x, y, z.

For a G-prebrick Γ, we define wtΓ : M → Γ by wtΓ := (wt)−1 ◦ wt. Thus
wtΓ(m) is the unique element mρ in Γ of the same weight as m ∈M .

Let Γ be a G-prebrick. Define

C(Γ) := 〈Γ〉/〈B(Γ)〉,
where

B(Γ) :=
{
x ·m, y ·m, z ·m

∣∣m ∈ Γ
}
\Γ.

Since B(Γ) is generated by monomials, the module C(Γ) is a torus invariant
G-constellation corresponding to a T-fixed point in the moduli space by [6].
Here the G-prebrick Γ forms a monomial C-basis of the G-constellation C(Γ).

Remark 2.6. In [6], it is shown that every T-fixed point on the birational
component Yθ corresponds to a G-prebrick. However, we do not know if there
is a G-prebrick corresponding to a T-fixed point on Mθ \ Yθ.

Definition 2.7. A G-prebrick Γ is said to be θ-stable if the torus invariant
G-constellation C(Γ) is θ-stable.

For a G-prebrick Γ = {mρ}, S(Γ) ⊂ M is the subsemigroup generated by
p·mρ

wtΓ(p·mρ) for all p ∈ M≥0, mρ ∈ Γ. In [6], it is proved that S(Γ) is finitely

generated so it induces an affine toric variety.

Proposition 2.8 ([6, Lemma 2.11]). For a G-prebrick Γ, the semigroup S(Γ)
is generated by b

wtΓ(b) for all b ∈ B(Γ) as a semigroup. In particular, S(Γ) is

finitely generated as a semigroup.
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Definition 2.9. For a G-prebrick Γ and a cone σ, we say that Γ corresponds
to σ if S(Γ) = C[σ

∨ ∩M ].

3. 3-fold terminal quotient singularities and G-constellations

This section reviews the results in [6] about 3-fold terminal quotient singu-
larities. For simplicity, we restrict us for the type of 1

2k+1 (k+ 1, 1, 2k) which is

the main case of this paper. In this section, G is the group of type 1
r (k+1, 1, 2k)

with r = 2k + 1. Mainly we apply the method in [6] to this case directly.
The quotient singularity X := C3/G does not have crepant resolutions but X

has a certain toric resolution introduced by Danilov [4] (see also [10]). Consider
the lattice

L = Z3 + Z · 1

r
(k + 1, 1, 2k).

For each 1 ≤ i ≤ 2k, let vi := 1
2k+1 (−ki, i, r − i) ∈ L where denotes the

residue modulo r. The economic resolution of C3/G is the toric variety obtained
by the consecutive weighted blowups at v2, v4, . . . , v2k, v1, v3, . . . , v2k−1 from
C3/G. Each discrepancy of the economic resolution is in the interval (0, 1) (see
[10]).

Let Σ be the toric fan of the economic resolution Y of X = C3/G. In the
fan Σ, we have the following (4k + 1) 3-dimensional cones:

(3.1)


σi = Cone(e1, vi−1, vi) for 1 ≤ i ≤ 2k + 1,

σ4i = Cone(v2i−1, v2i−2, v2i) for 1 ≤ i ≤ k,

σ5i = Cone(e2, v2i−2, v2i) for 1 ≤ i ≤ k.

Example 3.2. Let G be the group of type 1
7 (4, 1, 6). The fan of the economic

resolution of the quotient variety is shown in Figure 3.1.

For the moduli description of the economic resolutions, we need to define

(i) an admissible G-brickset, and
(ii) an admissible chamber in Θ.

3.1. Stability parameter space

The index set I := {0, 1, . . . , 2k} is identified with Z/(2k + 1)Z. For each
i ∈ I, we define θi ∈ HomZ(R(G),Q) by θi(ρj) = δij . Here ρj denotes the
irreducible representation of weight j. Note that θi − θj is an element of the
stability parameter space Θ. Applying [6] to this case, we have the following.

Proposition 3.3 (cf. [5, 6]). Let us consider the group G of type 1
2k+1 (k +

1, 1, 2k). For the permutation

ω =

(
0 1 2 3 4 . . . 2k − 2 2k − 1 2k
0 1 k + 1 2 k + 2 . . . 2k − 1 k 2k

)
,
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e3 e2

v1

v2

v3

v4

v5

v6

σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ41

σ42
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σ51

σ52

σ53

↑ e1

Figure 3.1. Fan of the economic resolution for 1
7 (4, 1, 6)

the admissible chamber C is the open cone generated by

εi :=

i−1∑
j=0

(
θω(j)+1 − θω(j)

)
for i = 1, . . . , 2k, i.e., C = {a1ε1 + · · ·+ a2kε2k | ai ∈ R>0}.

Proof. We proceed by induction on k. �

Note that

ω(i) =


0 if i = 0,

l + 1 if i = 2l + 1 is odd,

k + l if i = 2l is even.

Using this, we can describe εi as follows.

(3.4) εi =

{
θk+l+1 + θl+1 − θk+1 − θ0 if i = 2l + 1 is odd,

θk+l + θl+1 − θk+1 − θ0 if i = 2l is even.

Note that
ε0 = θ1 − θ0, ε2k = θ2k − θ0.

Corollary 3.5. For θ ∈ C, every θ-stable G-constellation F is generated by
ρ0 and ρk+1, i.e., every subsheaf of F whose support contains ρ0 and ρk+1 is
equal to F .
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Proof. From the discussion above, we find that θ(ρi) < 0 if and only if i =
0 or k + 1, because θ is a positive linear combination of εi. Assume that F
has a subsheaf G with suppG containing ρ0 and ρk+1. Since we have θ(G) ≤ 0,
from the stability, we have F = G. �

3.2. Admissible G-brickset

For the toric cones in (3.1), we define corresponding G-prebricks.

Proposition 3.6. For the cones in (3.1), the following G-prebricks Γl, Γ4i ,

and Γ5i correspond to σl, σ
4
i , and σ5i , respectively:

(i) Γ1 =
{

1, z, . . . , z2k
}

.

(ii) Γ2i+1 =

{
1, z, . . . , zk−i, y, . . . , yi−1, yi

yi+1

zk−i
, yi+1

zk−i−1 , . . . , y
i+1, y

i+2

zk−i
, . . . , y

l−1

zk−i

}
.

(iii) Γ2i =

{
1, z, . . . , zk−i, y, . . . , yi−1, yi

zk−i+1

yi−1 , z
k−i+1

yi−2 , . . . , zk−i+1, z
k−i+2

yi−1 , . . . , z
2k−2i+1

yi−1

}
.

(iv) Γ4i =


1, x, y, . . . , yk−i, yk−i+1

z, xz, xy, . . . , xyk−i

. . . , . . .

zi−1, xzi−1

.

(v) Γ5i =


1, x, x2, x3 . . . , x2k−2i+1, x2k−2i+2

z, xz

. . . , . . .

zi−1, xzi−1

.

Proof. The proof goes through a direct calculation (see Proposition 5.3.2 in
[5]). Here we show it for Γ2i. First note that

〈B(Γ)〉 = 〈yi+1, yz,
zk−i+2

yi−2
,
z2k−2i+2

yi−1
, x,

xzk−i+1

yi−1
〉.

Thus the semigroup S(Γ) is generated by

y2i

z2k−2i+1
, yz,

z2k−2i+2

y2i−1
,
xyi−1

zk−i+1
,
xzk−i+1

yi
,

and then S(Γ) = C[ y2i

z2k−2i+1 ,
z2k−2i+2

y2i−1 , xy
i−1

zk−i+1 ] = C[σ∨2i ∩M ]. Thus the assertion

is proved. �

Remark 3.7. Note that Γ4i and Γ5i are Nakamura G-graphs.
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3.3. G-constellations and representations of the McKay quiver

It is well-known that the language of G-constellations is the same as the
language of the McKay quiver representations with relations. In this section,
we briefly review the McKay quiver representations for our group G of type

1
2k+1 (k + 1, 1, 2k) with r = 2k + 1.

The vertex set of the McKay quiver for G is in one-to-one correspondence
with G∨. We denote ρi the weight of yi for each 0 ≤ i ≤ 2k. The quiver has
3(2k+1) arrows as follows. For each 0 ≤ i ≤ 2k, there are three arrows xi, yi, zi
which are arrows from ρi to ρi+k+1, ρi+1, ρi−1, respectively.

We impose the following commutation relations:

(3.8)


xiyi+k+1 − yixi+1,

xizi+k+1 − zixi−1,

yizi+1 − ziyi−1.

Note that by definition we are only interested in the representations of di-
mension vector (12k+1). After fixing a basis on the vector spaces attached to
vertices, the McKay quiver representations are in one-to-one correspondence
with points of the affine scheme

RepG := SpecC[x0, . . . , x2k, y0, . . . , y2k, z0, . . . , z2k]
/
IG,

where IG is the ideal generated by the commutation relations (3.8).
The torus T = (C×)3 acts on RepG by

(t1, t2, t3) · (xi, yi, zi) = (t1xi, t2yi, t3zi).

This action corresponds to the action on G-constellations. There is a torus T =
(C∗)3r/C∗ acting on RepG as change of basis on quiver representations. Using
this data, the GIT yields the moduli spaceMθ of θ-semistable G-constellations
as Mθ ' RepG //θ T .

Proposition 3.9. Let G be the group of type 1
2k+1 (k + 1, 1, 2k) and θ generic

parameter. Then each component of Mθ has a T-fixed point.

Proof. Let G be the group of type 1
2k+1 (k + 1, 1, 2k) and θ generic parameter.

By GIT construction in [8], the moduli spaceMθ is projective overM0, where
M0 is the moduli space of 0-semistable objects with 0 = (0, 0, . . . , 0) the trivial
parameter in Θ. In general, C3/G is an irreducible component of M0. In Ap-
pendix of [5], it is proved thatM0 is irreducible. Thus we have a T-equivariant
projective morphism

π : Mθ →M0 ' C3/G, F 7→ [suppF ],

where [suppF ] is the G-orbit which F supports on.
Let M be an irreducible component of Mθ. Since Yθ has a T-fixed point,

we may assume M is not the birational component. This means that M
consists of θ-stable G-constellations supported on the origin. Indeed, if F
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supports on a free G-orbit, then it is on the birational component Yθ (see
[6, Proposition 2.23]). By restricting the morphism π to M, we know that M
is projective over a point. ThusM itself is a projective scheme with T-action.
By Borel’s fixed point theorem, we get the existence of a T-fixed point on
M. �

Remark 3.10. In conclusion, each θ-stable G-prebrick yields a T-fixed point in
the moduli space Mθ. Even though each connected component of Mθ has a
T-fixed point, in general, it is not clear that each T-fixed point corresponds to
a G-prebrick.

4. The irreducibility

Theorem 4.1. Let G be the group of type 1
2k+1 (k + 1, 1, 2k). Let θ be in

the admissible chamber C. The moduli space Mθ of θ-stable G-constellations
is irreducible. Therefore the economic resolution Y of C3/G is isomorphic to
Mθ.

First, a simple calculation shows the following lemma.

Lemma 4.2. For the group of type 1
2k+1 (k + 1, 1, 2k), the G-invariant mono-

mials are generated by

• 1, yz,
• y2k+1, xyk, x3yk−1, x5yk−2, . . . , x2k−1y, x2k+1, and
• z2k+1, xzk+1, x2z.

4.1. Cases x0 6= 0

First note that G-constellations generated by ρ0 are all G-clusters. From
Corollary 3.5, for θ ∈ C, θ-stable G-constellations with x0 6= 0 must be G-
clusters. Therefore we have a one-to-one correspondence between the set

{θ-stable T-invariant G-constellations with x0 6= 0}
and the set

{θ-stable Nakamura G-graphs containing x}.
By classifying all Nakamura G-graphs containing x, we show all such G-graphs
are in Proposition 3.6.

Lemma 4.3. Let G be a group of type 1
2k+1 (k + 1, 1, 2k). If a Nakamura

G-graph Γ contains x, then the following hold.

(i) yz 6∈ Γ, x2z 6∈ Γ, yk+1 6∈ Γ, zk 6∈ Γ.
(ii) if y ∈ Γ, then x2 6∈ Γ.

Moreover, suppose that Γ is θ-stable for θ ∈ C. If zl ∈ Γ, then xzl ∈ Γ.

Proof. Since the weight of yz and x2z is the same as 1 and the weight of yk+1

and zk is the same as x, by the definition of G-graphs, (i) follows. Similarly
the y and x2 have the same weight so Γ cannot contain both.
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Suppose that a θ-stable Γ contains zl for 1 ≤ l ≤ k−1. In (3.4), the ε2k+1−2l

is

θ2k−l+1 + θk−l+1 − θk+1 − θ0.

By stability, there should be a non-zero path from ρk+1 to ρ2k+1−l or ρk+1−l.
Note that Γ contains zl which is the weight ρ2k+1−l. Since x does not divides zl,
there is no non-zero path from ρk+1 to ρ2k+1−l. Therefore there is a non-zero
path from ρk+1 to ρk+1−l.

Assume that the genuine monomial xαyβzγ gives the non-zero path. Then
xα+1yβzγ ∈ Γ. Since yz 6∈ Γ, either β or γ is zero. The weight of xα+1yβzγ ∈ Γ
is ρk+1−l so if γ = 0, then β = 2k+1− l ≥ k+1. This contradicts to yk+1 6∈ Γ.
Thus we can conclude that

α = 0, β = 0, γ = l. �

Proposition 4.4. With the notation above, if a Nakamura G-graph Γ contain-

ing x is θ-stable, then Γ is one of the Γ4i and Γ5i in Proposition 3.6.

Proof. Let Γ be a θ-stable G-graph containing x. There exists 1 ≤ i ≤ k such
that 1, z, z2, . . . , zi−1 ∈ Γ but zi 6∈ Γ. By Lemma 4.3, this induces that

x, xz, xz2, . . . , xzi−1 ∈ Γ, and xzi 6∈ Γ.

We have two cases: (i) y ∈ Γ, (ii) y 6∈ Γ.
Case (i). In this case, by Lemma 4.3, x2 6∈ Γ. Since xzi−1 ∈ Γ is of weight

ρk+1−i+1, the monomial yk+1−i+1 of the same weight cannot be in Γ. Since we
need (2k + 1) monomials, only possible case is:

Γ =



yk−i+1

yk−i, xyk−i

. . . , . . .

y, xy

1, x

z, xz

. . . , . . .

zi−1, xzi−1



.

This is Γ4i in Proposition 3.6.
Case (ii). In this case, Γ consists of monomials in x, z. We need (2k + 1)

monomials, but zi 6∈ Γ and x2z 6∈ Γ. By the definition of G-graphs, there is
only one choice:

Γ =


1, x, x2, x3 . . . , x2k−2i+1, x2k−2i+2

z, xz

. . . , . . .

zi−1, xzi−1

 .
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This is equal to Γ5i in Proposition 3.6. �

4.2. Cases x0 = 0

It is known that the moduli spaces of θ-stableG-constellations for 1
2k+1 (1, 2k)

is irreducible if θ is generic (see e.g. [1,2]). Thus it is enough to show that the
condition x0 = 0 implies xi = 0 for all i.

From Proposition 3.3, recall that for the permutation

ω =

(
0 1 2 3 4 · · · 2k − 2 2k − 1 2k
0 1 k + 1 2 k + 2 · · · 2k − 1 k 2k

)
,

the admissible chamber C is the open cone generated by

εi :=

i−1∑
j=0

(
θω(j)+1 − θω(j)

)
for i = 1, . . . , 2k (see (3.4)).

In this section, we mainly use the language of the McKay quiver represen-
tations in Section 3.3.

Rules of the Game.
• Since G-invariant monomials act trivially on T-invariant G-constellations,

any path induced by a G-invariant monomial except 1 is zero. In particular, the
action of yz is zero. This means in terms of the McKay quiver representations,
if yi is non-zero, then zi+1 is zero.
• If a path induced by a monomial xαyβzγ from ρi is non-zero, then so are

any path induced by xαyβzγ from ρi by the commutative relation (3.8). For
example, suppose that xy induces a non-zero path from ρ0. This means x0yk+1

is non-zero. From the commutative relation, y0x1 is non-zero as well.
• The commutative relation can be used to show a linear map is zero. For

example, if x0 = 0 and y0 6= 0, then from x0yk+1 = y0x1 we have x1 = 0.
• Suppose that there is a nonzero path from ρi to ρj which is induced by

xαyβzγ . If xi = 0, which is a linear map from ρi, then α = 0. If yj−1, which is
to ρj , then β = 0.

Remark 4.5. Note that the admissible chamber C is a chamber in the GIT
parameter space Θ. This means that θ-stable objects are the same for any
θ ∈ C. Since the admissible chamber C is the open cone generated by εi’s, i.e.,
C = {a1ε1 + · · ·+ a2kε2k | ai ∈ R>0}, we conclude that it is enough to consider
the stability with respect to εj for all j. Indeed, for each j, we may consider
θ =

∑
aiεi with ai = 1 for i 6= j and aj � 0, then θ is equivalent to εj .

Let 0 ≤ j ≤ 2k+ 1 be the smallest number such that the linear map yω(j) is
zero. We show that there is a unique T-invariant θ-stable G-constellation for
each j.
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4.2.1. j = 0. This means y0 = 0. The first vector ε1 is equal to

θ1 − θ0.

By stability, there should be a non-zero path from ρ0 to ρ1. Since x0 = y0 = 0,
the path should be induced by z2k. Here the path induced by z2k is the linear
map from ρ0 to ρ1 given by

z0z2kz2k−1 · · · z3z2

which is non-zero. From Rule, xi = yi = 0 for each i. This corresponds to the
G-prebrick Γ1 in Proposition 3.6.

4.2.2. j = 1. This means y1 = 0 and y0 is non-zero. The second vector ε2 is

θ2 − θ0.

By stability, there should be a non-zero path from ρ0 to ρ2. Suppose that the
path is given by xαyβzγ . Since x0 = 0 and y1 = 0, we have α = 0 and β ≤ 1.
Thus γ ≥ 1 so β = 0. Therefore the path is given by z2k−1 which induces a
non-zero linear map

z0z2kz2k−1 · · · z3.

This corresponds to Γ2 in Proposition 3.6.

4.2.3. j = 2. This means y0, y1 are non-zero and yk+1 is zero. The 3rd ray
ε3 is

θk+2 − θk+1 + θ2 − θ0.

Here we have x1 = x2 = z1 = z2 = 0.
Suppose that there is a non-zero path from ρk+1 to ρk+2. This path should

be given by a monomial of weight ρ1. Since yk+1 is zero, the candidates are

x2, xzk, z2k.

However, as we have x1 = z1 = 0, x2 and xzk cannot induce non-zero paths
from ρk+1. Thus the non-zero path is induced by z2k which is equal to

zk+1zkzk−1 · · · z1z0 · · · zk+3.

But it contradicts to z1 = 0.
By stability with the discussion above, there should be two non-zero paths

p from ρ0 to ρk+2 and q from ρk+1 to ρ2, respectively. Since we have x0 =
yk+1 = 0, the path p should be given by zk−1. Since yk+1 = 0 = x1 = 0, the
path q is given by zk−1. This corresponds to Γ3 in Proposition 3.6.
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4.2.4. j = 2l + 1 for 0 < l < k. Note that ω(j) = l + 1. The condition
j = 2l + 1 means that

y0, y1, y2, . . . , yl 6= 0, yk+1, yk+2, . . . , yk+l 6= 0, yl+1 = 0.

This implies that many linear maps are zero, for example

x0 = x1 = x2 = · · · = xl = xl+1 = zk+2 = zk+3 = · · · = zk+l+1 = 0.

The (j + 1)-th vector εj+1 is

θk+l+1 + θl+2 − θk+1 − θ0.

Suppose that there is a non-zero path from ρ0 to ρl+2. Since yl+1 = x0 = 0,
we have the path is given by z2k−l−1, which is equal to

z0z2kz2k−1 · · · zk+2zk+1 · · · zl+3.

It contradicts to zk+2 = 0.
By stability, we have two non-zero paths p from ρ0 to ρk+1+l and q from

ρk+1 to ρl+2, respectively. Since x0 is zero, the path p is given by yk+1+l or
zk−l. From the fact yl+1 = 0, we have p is given by zk−l. Assume that the
path q is given by xαyβzγ . Since yl+1 = 0 and xk+1x1 = 0, we have β = 0
and α ≤ 1. If α = 1, then from xk+1z1 = 0, we have γ = 0. This means q is
given by x, which cannot reach ρl+2. From this, we have the path q is given
by zk−l−1. This corresponds to Γj+1 in Proposition 3.6.

4.2.5. j = 2l for 0 < l < k. Note that ω(j) = k + l. The condition j = 2l
means that

y0, y1, y2, . . . , yl 6= 0, yk+1, yk+2, . . . , yk+l−1 6= 0, yk+l = 0.

This implies that many linear maps are zero, for example

x0 = x1 = x2 = · · · = xl = xl+1 = zk+2 = zk+3 = · · · = zk+l = 0.

The (j + 1)-th vector εj+1 is

θk+l+1 + θl+1 − θk+1 − θ0.

Suppose that there is a non-zero path induced by xm1ym2zm3 from ρk+1 to
ρk+l+1. Since both yk+l and x1 are zero, we have m2 = 0 and m1 ≤ 1. From
xk+1z1 = 0, if m1 = 1, then m3 = 0. This means the path is given by x, which
is to ρ1. Thus we have m1 = 0 and the path is given by z2k−l, which is equal
to

zk+1zkzk−1 · · · z2z1z0 · · · zk+l+2.

This should be zero because z1 = 0.
By stability, there exist two non-zero paths p from ρ0 to ρk+l+1 and q from

ρk+1 to ρl+1, respectively. First note that the path p should be induced by
zk−l because x0 = yk+l = 0. From this, we can conclude that xk+l+1 = 0;
otherwise the monomial xzk−l induces a non-zero path from ρ0 to ρl+1, which
contradicts to x0 = 0. Since xk+l+1 = 0, we have that q is induced by yk+l+1
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or zk−l. From the fact yk+l = 0, we get q is given by zk−l. This corresponds
to Γj+1 in Proposition 3.6.

4.2.6. j = 2k. This means that all yi’s are non-zero except y2k. This shows
that all xi = zi = 0 for all i. This corresponds to Γ2k+1 in Proposition 3.6.

4.3. Conclusion

Through this section, we have seen that T-invariant θ-stableG-constellations
are all listed in Proposition 3.6. In other words, T-invariant θ-stable G-
constellations lie over the birational component Yθ. In Proposition 4.10 in [6],
it is shown that the birational component is a connected component. There-
fore we can conclude that Yθ = Mθ, which means the moduli space Mθ is
irreducible. This proves Theorem 4.1.

Remark 4.6. Theorem 4.1 was first stated in [5] without rigorous proof. Note
that without Proposition 3.9, the irreducibility ofMθ does not follow from the
classification of T-invariant θ-stable G-constellations.
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