ALTERNATIVE PROOF OF MARSAGLIA'S METHOD ${ }^{\dagger}$

SOON-GEOL KWON

Abstract

We derive an alternative proof of Marsaglia's method for generating a pair of independent standard normal random variables.

AMS Mathematics Subject Classification : 62 E 15 .
Key words and phrases : Marsaglia's method, standard normal random
variable, independence.

1. Introduction

Standard normal random variables are frequently used in computer science, computational statistics, and in particular, in applications of the Monte Carlo method ([2].)

The Marsaglia's polar method ([3]) is a pseudo-random number sampling method for generating a pair of independent standard normal random variables. The Marsaglia's polar method is a modification of Box-Müller's method that uses the rejection method and it is superior to the Box-Müller's method.

The main objective of this paper is to provide an alternative proof of Marsaglia's method for generating a pair of independent standard normal random variables. However, while polar coordinates are used in Marsaglia's polar method in [3], we do use rectangular coordinates to derive a pair of independent standard normal random variables in this paper.

Let (X_{1}, X_{2}) be a random vector. Suppose we know the joint distribution of (X_{1}, X_{2}) and we seek the distribution of a transformation of (X_{1}, X_{2}).

Let (X_{1}, X_{2}) have a jointly continuous distribution with probability density function (pdf) $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ and support set \mathcal{S}. Suppose the random variables Y_{1} and Y_{2} are given by $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$, where the functions $y_{1}=u_{1}\left(x_{1}, x_{2}\right)$ and $y_{2}=u_{2}\left(x_{1}, x_{2}\right)$ define a one-to-one transformation that maps the set \mathcal{S} in \mathbb{R}^{2} onto a (two dimensional) set \mathcal{T} in \mathbb{R}^{2}, where \mathcal{T} is the support of $\left(Y_{1}, Y_{2}\right)$.

[^0]If we express each of x_{1} and x_{2} in terms of y_{1} and y_{2}, we can write $x_{1}=$ $w_{1}\left(y_{1}, y_{2}\right), x_{2}=w_{2}\left(y_{1}, y_{2}\right)$. The determinant of order 2 ,

$$
J=\left|\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \tag{1}\\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|
$$

is called the Jacobian of the transformation and will be denoted by the symbol J. It will be assumed that these first-order partial derivatives are continuous and that the Jacobian J is not identically equal to zero in \mathcal{T}.

We can find, by use of a theorem in analysis, the joint probability density function of $\left(Y_{1}, Y_{2}\right)$. Let A be a subset of \mathcal{S}, and let B denote the mapping of A under the one-to-one transformation. Because the transformation is one-to-one, the events $\left\{\left(X_{1}, X_{2}\right) \in A\right\}$ and $\left\{\left(Y_{1}, Y_{2}\right) \in B\right\}$ are equivalent. Hence,

$$
P\left[\left(Y_{1}, Y_{2}\right) \in B\right]=P\left[\left(X_{1}, X_{2}\right) \in A\right]=\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

We wish to change variables of integration by writing $y_{1}=u_{1}\left(x_{1}, x_{2}\right), y_{2}=$ $u_{2}\left(x_{1}, x_{2}\right)$ or $x_{1}=w_{1}\left(y_{1}, y_{2}\right), x_{2}=w_{2}\left(y_{1}, y_{2}\right)$. It has been proven in analysis, that this change of variables requires

$$
\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\iint_{B} f_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)|J| d y_{1} d y_{2}
$$

Thus, for every set B in \mathcal{T},

$$
P\left[\left(Y_{1}, Y_{2}\right) \in B\right]=\iint_{B} f_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)|J| d y_{1} d y_{2}
$$

which implies that the joint probability density function $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}f_{X_{1}, X_{2}}\left(w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right)|J|, & \left(y_{1}, y_{2}\right) \in \mathcal{T} \tag{2}\\ 0, & \text { elsewhere }\end{cases}
$$

The following theorem provides a criterion for independence of two random variables.

Theorem 1.1. ([1, 4]) Let the random variables X_{1} and X_{2} have the joint probability density function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$. Then the random variables X_{1} and X_{2} are independent if and only if $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ can be written as a product of a nonnegative function of x_{1} and a nonnegative function of x_{2}. That is,

$$
\begin{equation*}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right) \tag{3}
\end{equation*}
$$

where $g\left(x_{1}\right)>0, x_{1} \in \mathcal{S}_{1}$, zero elsewhere, and $h\left(x_{2}\right)>0, x_{2} \in \mathcal{S}_{2}$, zero elsewhere.

2. Alternative proof

Let U be the uniform random variable on $(-1,1)$, that is, the probability density function of U is

$$
f_{U}(u)= \begin{cases}\frac{1}{2}, & -1<u<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Let $X_{1}=U$ and $X_{2}=U$ be uniform random variables on $(-1,1)$. Set

$$
\begin{equation*}
S=X_{1}^{2}+X_{2}^{2} \tag{4}
\end{equation*}
$$

If $S<1$, then $\left(X_{1}, X_{2}\right)$ is uniformly distributed inside the unit circle. Thus, the joint probability density function of X_{1} and X_{2} is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{\pi}, & x_{1}^{2}+x_{2}^{2}<1 \tag{5}\\ 0, & \text { elsewhere }\end{cases}
$$

From now on we use Z_{1} and Z_{2} instead of using Y_{1} and Y_{2}, since the letter Z has been used to represent the standard normal random variable in Statistics.

Suppose the random variables Z_{1} and Z_{2} are given by

$$
Z_{1}=X_{1} \sqrt{\frac{-2 \ln S}{S}}, \quad Z_{2}=X_{2} \sqrt{\frac{-2 \ln S}{S}}
$$

We have the transformation from $\left(x_{1}, x_{2}\right)$ to $\left(z_{1}, z_{2}\right)$:

$$
\begin{array}{ll}
z_{1}=x_{1} \sqrt{\frac{-2 \ln s}{s}}, & -\infty<z_{1}<\infty \\
z_{2}=x_{2} \sqrt{\frac{-2 \ln s}{s}}, & -\infty<z_{2}<\infty
\end{array}
$$

where $s=x_{1}^{2}+x_{2}^{2}$. The functions z_{1} and z_{2} define a one-to-one transformation that maps the set square onto the two dimensional real plane \mathbb{R}^{2}, where \mathbb{R}^{2} is the support of $\left(Z_{1}, Z_{2}\right)$. Then we have

$$
\frac{z_{1}}{z_{2}}=\frac{x_{1}}{x_{2}}
$$

which implies

$$
\begin{equation*}
x_{1}=\frac{z_{1}}{z_{2}} x_{2}, \quad x_{2}=\frac{z_{2}}{z_{1}} x_{1} \tag{6}
\end{equation*}
$$

and we have

$$
z_{1}^{2}+z_{2}^{2}=\left(x_{1}^{2}+x_{2}^{2}\right) \frac{-2 \ln s}{s}=-2 \ln s=-2 \ln \left(x_{1}^{2}+x_{2}^{2}\right)
$$

which implies

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}=e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} \tag{7}
\end{equation*}
$$

By solving (6) and (7) simultaneously for x_{1} and x_{2}, we have the inverse transformation from $\left(z_{1}, z_{2}\right)$ to $\left(x_{1}, x_{2}\right)$:

$$
\begin{align*}
& x_{1}=\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \tag{8}\\
& x_{2}=\frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \tag{9}
\end{align*}
$$

To find the Jacobian we take partial derivatives of x_{1} and x_{2} with respect to z_{1} and z_{2} :

$$
\left.\begin{array}{rl}
\frac{\partial x_{1}}{\partial z_{1}}= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{\partial}{\partial z_{1}}\left(\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}\right)+\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} \frac{\partial}{\partial z_{1}}\left(e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\right) \\
= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\left(\frac{\sqrt{z_{1}^{2}+z_{2}^{2}}-z_{1} \frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}}{z_{1}^{2}+z_{2}^{2}}\right) \\
& +\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}\left(-\frac{z_{1}}{2}\right)\left(e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\right) \\
= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{1}{2\left(z_{1}^{2}+z_{2}^{2}\right)^{3 / 2}\left[2 z_{2}^{2}-z_{1}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right]} \\
\frac{\partial x_{1}}{\partial z_{2}}= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{\partial}{\partial z_{2}}\left(\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}\right)+\frac{z_{1}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} \frac{\partial}{\partial z_{2}}\left(e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\right) \\
= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{1}{2\left(z_{1}^{2}+z_{2}^{2}\right)^{3 / 2}\left[-z_{1} z_{2}\left(2+z_{1}^{2}+z_{2}^{2}\right)\right]} \\
\frac{\partial x_{2}}{\partial z_{1}}= & e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{\partial}{\partial z_{1}}\left(\frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}\right)+\frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} \frac{\partial}{\partial z_{2}}\left(e e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\right) \\
\end{array}\right)
$$

$$
\begin{aligned}
\frac{\partial x_{2}}{\partial z_{2}} & =e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{\partial}{\partial z_{2}}\left(\frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}}}\right)+\frac{z_{2}}{\sqrt{z_{1}^{2}+z_{2}^{2}}} \frac{\partial}{\partial z_{2}}\left(e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}}\right) \\
& =e^{-\frac{z_{1}^{2}+z_{2}^{2}}{4}} \frac{1}{2\left(z_{1}^{2}+z_{2}^{2}\right)^{3 / 2}}\left[2 z_{1}^{2}-z_{2}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right]
\end{aligned}
$$

By (1) we have the Jacobian determinant

$$
\begin{aligned}
J= & \left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial z_{1}} & \frac{\partial x_{1}}{\partial z_{2}} \\
\frac{\partial x_{2}}{\partial z_{1}} & \frac{\partial x_{2}}{\partial z_{2}}
\end{array}\right| \\
= & \frac{e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}}{4\left(z_{1}^{2}+z_{2}^{2}\right)^{3}}\left|\begin{array}{cc}
2 z_{2}^{2}-z_{1}^{2}\left(z_{1}^{2}+z_{2}^{2}\right) & -z_{1} z_{2}\left(2+z_{1}^{2}+z_{2}^{2}\right) \\
-z_{1} z_{2}\left(2+z_{1}^{2}+z_{2}^{2}\right) & 2 z_{1}^{2}-z_{2}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)
\end{array}\right| \\
= & \frac{e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}}{4\left(z_{1}^{2}+z_{2}^{2}\right)^{3}}\left\{4 z_{1}^{2} z_{2}^{2}-2 z_{1}^{4}\left(z_{1}^{2}+z_{2}^{2}\right)-2 z_{2}^{4}\left(z_{1}^{2}+z_{2}^{2}\right)\right. \\
& \left.+z_{1}^{2} z_{2}^{2}\left(z_{1}^{2}+z_{2}^{2}\right)^{2}-z_{1}^{2} z_{2}^{2}\left(4+4\left(z_{1}^{2}+z_{2}^{2}\right)+\left(z_{1}^{2}+z_{2}^{2}\right)^{2}\right)\right\} \\
= & \frac{e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}}{4\left(z_{1}^{2}+z_{2}^{2}\right)^{2}}\left(-2 z_{1}^{4}-2 z_{2}^{4}-4 z_{1}^{2} z_{2}^{2}\right) \\
= & \frac{e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}}{4\left(z_{1}^{2}+z_{2}^{2}\right)^{2}}(-2)\left(z_{1}^{2}+z_{2}^{2}\right)^{2} \\
= & -\frac{1}{2} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}
\end{aligned}
$$

Thus, the absolute value of the Jacobian determinant J is

$$
\begin{equation*}
|J|=\frac{1}{2} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}} \tag{10}
\end{equation*}
$$

Therefore, by (2), (5), and (10), the joint probability density function of Z_{1} and Z_{2} is

$$
\begin{aligned}
f_{Z_{1}, Z_{2}}\left(z_{1}, z_{2}\right) & =f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)|J| \\
& =\frac{1}{\pi} \frac{1}{2} e^{-\frac{z_{1}^{2}+z_{2}^{2}}{2}}
\end{aligned}
$$

$$
=\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{1}^{2}}{2}}\right)\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{2}^{2}}{2}}\right)
$$

By Theorem 1.1, Z_{1} and Z_{2} are independent.
Hence, $\left(Z_{1}, Z_{2}\right)$ is a pair of independent standard normal random variables. An alternative proof is completed.

References

1. R.V. Hogg, J.W. McKean, and A.T. Craig, Introduction to Mathematical Statistics, 8th Edition, Pearson, Boston, 2019.
2. D.E. Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd Edition, Addison-Wesley, Berkeley, 1998.
3. G. Marsaglia, T.A. Bray, A Convenient Method for Generating Normal Variables, SIAM Review 6 (1964), 260-264.
4. S. Ross, A First Course In Probability, 9th Edition, Pearson, Harlow, 2019.

Soon-Geol Kwon received Ph.D. from Iowa State University. Since 1998 he has been at Sunchon National University. His research interests include multiwavelets and mathematical statistics.
Department of Mathematics Education, Sunchon National University, Suncheon, 57922, Korea.
e-mail: sgkwon@scnu.ac.kr

[^0]: Received September 26, 2022. Revised October 26, 2022. Accepted October 27, 2022.
 ${ }^{\dagger}$ This work is supported by a research promotion program of SCNU.
 (C) 2022 KSCAM.

