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DEGREE OF APPROXIMATION BY

KANTOROVICH-CHOQUET QUASI-INTERPOLATION

NEURAL NETWORK OPERATORS REVISITED

GEORGE A. ANASTASSIOU

Abstract. In this article we exhibit univariate and multivariate quan-

titative approximation by Kantorovich-Choquet type quasi-interpolation
neural network operators with respect to supremum norm. This is done

with rates using the first univariate and multivariate moduli of continuity.

We approximate continuous and bounded functions on RN , N ∈ N. When
they are also uniformly continuous we have pointwise and uniform conver-

gences. Our activation functions are induced by the arctangent, algebraic,

Gudermannian and generalized symmetrical sigmoid functions.
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1. Introduction

The author in [1] and [2], see Chapters 2-5, was the first to establish neu-
ral network approximations to continuous functions with rates by very specifi-
cally defined neural network operators of Cardaliaguet-Euvrard and ”Squashing”
types, by employing the modulus of continuity of the engaged function or its high
order derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators
”bell-shaped” and ”squashing” functions are assumed to be compact support.
Also in [2] he gives the Nth order asymptotic expansion for the error of weak ap-
proximation of these two operators to a special natural class of smooth functions,
see Chaptes 4-5 there.

The author inspired by [20], continued his studies on neural networks ap-
proximation by introducing and using the proper quasi-interpolation operators
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of sigmoidal and hyperbolic tangent type which resulted into [3] - [7], by treat-
ing both the univariate and multivariate cases. He did also the corresponding
fractional case [8]. For recent works see [9] - [19].

The author here performs univariate and multivariate arctangent-algebraic-
Gudermannian-generalized symmetrical sigmoid activation functions based neu-
ral network approximations to continuous functions over the whole RN , N ∈ N,
then he extends his results to complex valued functions. All convergences here
are with rates expressed via the modulus of continuity of the involved function
and given by very tight Jackson type inequalities. This is a continuation of [12],
Chapter 1.

The author comes up with the ”right” precisely defined flexible quasi-interpola
-tion, Kantorovich-Choquet type integral coefficient neural networks operators
associated with: arctangent-algebraic-Gudermannian-generalized symmetrical
sigmoid activation functions. In preparation to prove our results we establish
important properties of the basic density functions defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection
weights, cj ∈ R are the coefficients, 〈aj · x〉 is the inner product of aj and x, and
σ is the activation function of the network. In many fundamental neural network
models, the activation functions are the arctangent-algebraic-Gudermannian-
generalized symmetrical sigmoid activation functions. About neural networks in
general read [25], [26], [27].

2. Background

Next we present briefly about the Choquet integral.
We make

Definition 2.1. Consider Ω 6= ∅ and let C be a σ-algebra of subsets in Ω.
(i) (see, e.g., [28], p. 63) The set function µ : C → [0,+∞] is called a monotone

set function (or capacity) if µ (∅) = 0 and µ (A) ≤ µ (B) for all A,B ∈ C, with
A ⊂ B. Also, µ is called submodular if

µ (A ∪B) + µ (A ∩B) ≤ µ (A) + µ (B) , for all A,B ∈ C.

µ is called bounded if µ (Ω) < +∞ and normalized if µ (Ω) = 1.
(ii) (see, e.g., [28], p. 233, or [21]) If µ is a monotone set function on C and

if f : Ω → R is C-measurable (that is, for any Borel subset B ⊂ R it follows
f−1 (B) ∈ C), the for any A ∈ C, the Choquet integral is defined by

(C)

∫
A

fdµ =

∫ +∞

0

µ (Fβ (f) ∩A) dβ +

∫ 0

−∞
[µ (Fβ (f) ∩A)− µ (A)] dβ,
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where we used the notation Fβ (f) = {ω ∈ Ω : f (ω) ≥ β}. Notice that if f ≥ 0

on A, then in the above formula we get
∫ 0

−∞ = 0.
The integrals on the right-hand side are the usual Riemann integral.
The function f will be called Choquet integrable on A if (C)

∫
A
fdµ ∈ R.

Next we list some well known properties of the Choquet integral.

Remark 2.1. If µ : C → [0,+∞] is a monotone set function, then the following
properties hold:

(i) For all a ≥ 0 we have (C)
∫
A
afdµ = a · (C)

∫
A
fdµ (if f ≥ 0 then see, e.g.,

[28], Theorem 11.2, (5), p. 228 and if f is arbitrary sign, then see, e.g., [22], p.
64, Proposition 5.1, (ii)).

(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [28], pp. 232-233,
or [22], p. 65) (C)

∫
A

(f + c) dµ = (C)
∫
A
fdµ+ c · µ (A) .

If µ is submodular too, then for all f, g of arbitrary sign and lower bounded,
we have (see, e.g., [22], p. 75, Theorem 6.3)

(C)

∫
A

(f + g) dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ.

(iii) If f ≤ g on A then (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [28], p. 228,

Theorem 11.2, (3) if f, g ≥ 0 and p. 232 if f, g are of arbitrary sign).
(iv) Let f ≥ 0. If A ⊂ B then (C)

∫
A
fdµ ≤ (C)

∫
B
fdµ. In addition, if µ is

finitely aubadditive, then

(C)

∫
A∪B

fdµ ≤ (C)

∫
A

fdµ+ (C)

∫
B

fdµ.

(v) It is immediate that (C)
∫
A

1 · dµ (t) = µ (A) .
(vi) The formula µ (A) = γ (M (A)), where γ : [0, 1] → [0, 1] is an increasing

and concave function, with γ (0) = 0, γ (1) = 1 and M is a probability measure
(or only finitely additive) on a σ-algebra on Ω (that is, M (∅) = 0, M (Ω) = 1
and M is countably additive), gives simple examples of normalized, monotone
and submodular set functions (see, e.g., [22], pp. 16-17, Example 2.1). Such
of set functions µ are also called distorsions of countably normalized, additive
measures (or distorted measures). For a simple example, we can take γ (t) = 2t

1+t ,

γ (t) =
√
t.

If the above γ function is increasing, concave and satisfies only γ (0) = 0, then
for any bounded Borel measure m, µ (A) = γ (m (A)) gives a simple example of
bounded, monotone and submodular set function.

(vii) If µ is a countably additive bounded measure, then the Choquet integral
(C)

∫
A
fdµ reduces to the usual Lebesgue type integral (see, e.g., [22], p. 62, or

[28], p. 226).
(viii) If f ≥ 0, then (C)

∫
A
fdµ ≥ 0.

(ix) Let µ =
√
M , where M is the Lebesgue measure on [0,+∞), then µ is

a monotone and submodular set function, furthermore µ is strictly positive, see
[24].
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(x) If Ω = RN , N ∈ N, we call µ strictly positive if µ (A) > 0, for any open
subset A ⊆ RN .

2.1. About the arctangent activation function. We consider the

arctanx =

∫ x

0

dz

1 + z2
, x ∈ R. (1)

We will be using

h (x) :=
2

π
arctan

(π
2
x
)

=
2

π

∫ πx
2

0

dz

1 + z2
, x ∈ R, (2)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (−x) = −h (x) , h (+∞) = 1, h (−∞) = −1,

and

h′ (x) =
4

4 + π2x2
> 0, all x ∈ R. (3)

We consider the activation function

ψ1 (x) :=
1

4
(h (x+ 1)− h (x− 1)) , x ∈ R, (4)

and we notice that
ψ1 (−x) = ψ1 (x) , (5)

it is an even function.
Since x+ 1 > x− 1, then h (x+ 1) > h (x− 1), and ψ1 (x) > 0, all x ∈ R.
We see that

ψ1 (0) =
1

π
arctan

π

2
∼= 18.31. (6)

Let x > 0, we have that

ψ′1 (x) =
1

4
(h′ (x+ 1)− h′ (x− 1)) =

−4π2x(
4 + π2 (x+ 1)

2
)(

4 + π2 (x− 1)
2
) < 0. (7)

That is
ψ′1 (x) < 0, for x > 0. (8)

That is ψ1 is strictly decreasing on [0,∞) and clearly is strictly increasing on
(−∞, 0], and ψ′1 (0) = 0.

Observe that

lim
x→+∞

ψ1 (x) = 1
4 (h (+∞)− h (+∞)) = 0,

and
lim

x→−∞
ψ1 (x) = 1

4 (h (−∞)− h (−∞)) = 0.
(9)

That is the x-axis is the horizontal asymptote on ψ1.
All in all, ψ1 is a bell symmetric function with maximum ψ1 (0) ∼= 18.31.
We need
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Theorem 2.2. ([11], p. 286) We have that

∞∑
i=−∞

ψ1 (x− i) = 1, ∀ x ∈ R. (10)

Theorem 2.3. ([11], p. 287) It holds∫ ∞
−∞

ψ1 (x) dx = 1. (11)

So that ψ1 (x) is a density function on R.
We mention

Theorem 2.4. ([11], p. 288) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 k = −∞

: |nx− k| ≥ n1−α

ψ1 (nx− k) <
2

π2 (n1−α − 2)
. (12)

We introduce (see [17])

Z1 (x1, ..., xN ) := Z1 (x) :=

N∏
i=1

ψ1 (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (13)

It has the properties:
(i) Z1 (x) > 0, ∀ x ∈ RN ,
(ii)

∞∑
k=−∞

Z1 (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z1 (x1 − k1, ..., xN − kN ) = 1,

(14)
where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence
(iii)

∞∑
k=−∞

Z1 (nx− k) = 1, (15)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN
Z1 (x) dx = 1, (16)

that is Z1 is a multivariate density function.
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(v) It is clear that
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z1 (nx− k) <
2

π2 (n1−β − 2)
=: c1 (β, n) , (17)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .
Above it is ‖x‖∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set ∞ := (∞, ...,∞),

−∞ = (−∞, ...−∞) upon the multivariate context.

2.2. About the algebraic activation function. Here see also [17].
We consider the generator algebraic function

ϕ (x) =
x

2m
√

1 + x2m
, m ∈ N, x ∈ R, (18)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ϕ (−x) = −ϕ (x) with ϕ (0) = 0. We get that

ϕ′ (x) =
1

(1 + x2m)
2m+1
2m

> 0, ∀ x ∈ R, (19)

proving ϕ as strictly increasing over R, ϕ′ (x) = ϕ′ (−x) . We easily find that
lim

x→+∞
ϕ (x) = 1, ϕ (+∞) = 1, and lim

x→−∞
ϕ (x) = −1, ϕ (−∞) = −1.

We consider the activation function

ψ2 (x) =
1

4
[ϕ (x+ 1)− ϕ (x− 1)] . (20)

Clearly it is ψ2 (x) = ψ2 (−x) , ∀ x ∈ R, so that ψ2 is an even function and
symmetric with respect to the y-axis. Clealry ψ2 (x) > 0, ∀ x ∈ R.

Also it is

ψ2 (0) =
1

2 2m
√

2
. (21)

By [13], we have that ψ′2 (x) < 0 for x > 0. That is ψ2 is strictly decreasing over
(0,+∞) .

Clearly, ψ2 is strictly increasing over (−∞, 0) and ψ′2 (0) = 0.
Furthermore we obtain that

lim
x→+∞

ψ2 (x) =
1

4
[ϕ (+∞)− ϕ (+∞)] = 0, (22)

and

lim
x→−∞

ψ2 (x) =
1

4
[ϕ (−∞)− ϕ (−∞)] = 0. (23)

That is the x-axis is the horizontal asymptote of ψ2.
Conclusion, ψ2 is a bell shape symmetric function with maximum

ψ2 (0) =
1

2 2m
√

2
, m ∈ N. (24)

We need



Degree of Approximation by Kantorovich-Choquet quasi-interpolation ... 275

Theorem 2.5. ([13]) We have that
∞∑

i=−∞
ψ2 (x− i) = 1, ∀ x ∈ R. (25)

Theorem 2.6. ([13]) It holds∫ ∞
−∞

ψ2 (x) dx = 1. (26)

Theorem 2.7. ([13]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds
∞∑

 k = −∞
: |nx− k| ≥ n1−α

ψ2 (nx− k) <
1

4m (n1−α − 2)
2m , m ∈ N. (27)

We introduce (see also [18])

Z2 (x1, ..., xN ) := Z2 (x) :=

N∏
i=1

ψ2 (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (28)

It has the properties:
(i) Z2 (x) > 0, ∀ x ∈ RN ,
(ii)
∞∑

k=−∞

Z2 (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z2 (x1 − k1, ..., xN − kN ) = 1,

(29)
where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence
(iii)

∞∑
k=−∞

Z2 (nx− k) = 1, (30)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN
Z2 (x) dx = 1, (31)

that is Z2 is a multivariate density function.
(v) It is clear that

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

Z2 (nx− k) <
1

4m (n1−β − 2)
2m =: c2 (β, n) , (32)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN , m ∈ N.
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2.3. About the Gudermannian activation function. See also [29], [14].
Here we consider gd (x) the Gudermannian function [29], which is a sigmoid

function, as a generator function:

σ (x) = 2 arctan
(

tanh
(x

2

))
=

∫ x

0

dt

cosh t
=: gd (x) , x ∈ R. (33)

Let the normalized generator sigmoid function

f (x) :=
4

π
σ (x) =

4

π

∫ x

0

dt

cosh t
=

8

π

∫ x

0

1

et + e−t
dt, x ∈ R. (34)

Here

f ′ (x) =
4

π coshx
> 0, ∀ x ∈ R,

hence f is strictly increasing on R.
Notice that tanh (−x) = − tanhx and arctan (−x) = − arctanx, x ∈ R.
So, here the neural network activation function will be:

ψ3 (x) =
1

4
[f (x+ 1)− f (x− 1)] , x ∈ R. (35)

By [14], we get that

ψ3 (x) = ψ3 (−x) , ∀ x ∈ R, (36)

i.e. it is even and symmetric with respect to the y-axis. Here we have f (+∞) =
1, f (−∞) = −1 and f (0) = 0. Clearly it is

f (−x) = −f (x) , ∀ x ∈ R, (37)

an odd function, symmetric with respect to the origin. Since x+ 1 > x− 1, and
f (x+ 1) > f (x− 1), we obtain ψ3 (x) > 0, ∀ x ∈ R.

By [14], we have that

ψ3 (0) =
2

π
gd (1) ∼= 0.551. (38)

By [14] ψ3 is strictly decreasing on (0,+∞), and strictly increasing on (−∞, 0),
and ψ′3 (0) = 0.

Also we have that

lim
x→+∞

ψ3 (x) = lim
x→−∞

ψ3 (x) = 0, (39)

that is the x-axis is the horizontal asymptote for ψ3.
Conclusion, ψ3 is a bell shaped symmetric function with maximum ψ3 (0) ∼=

0.551.
We need

Theorem 2.8. ([14]) It holds that

∞∑
i=−∞

ψ3 (x− i) = 1, ∀ x ∈ R. (40)
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Theorem 2.9. ([14]) We have that∫ ∞
−∞

ψ3 (x) dx = 1. (41)

So ψ3 (x) is a density function.

Theorem 2.10. ([14]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 k = −∞

: |nx− k| ≥ n1−α

ψ3 (nx− k) <
4

πe(n1−α−2) =
4e2

πen1−α . (42)

We introduce (see also [16])

Z3 (x1, ..., xN ) := Z3 (x) :=

N∏
i=1

ψ3 (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (43)

It has the properties:
(i) Z3 (x) > 0, ∀ x ∈ RN ,
(ii)

∞∑
k=−∞

Z3 (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z3 (x1 − k1, ..., xN − kN ) = 1,

(44)
where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence
(iii)

∞∑
k=−∞

Z3 (nx− k) = 1, (45)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN
Z3 (x) dx = 1, (46)

that is Z3 is a multivariate density function.
(v) It is also clear that

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

Z3 (nx− k) <
4e2

πen1−β = c3 (β, n) , (47)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN , m ∈ N.
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2.4. About the generalized symmetrical activation function. Here we
consider the generalized symmetrical sigmoid function ([15], [23])

f1 (x) =
x

(1 + |x|µ)
1
µ

, µ > 0, x ∈ R. (48)

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter µ is a shape parameter controling how fast the curve ap-
proaches the asymptotes for a given slope at the inflection point. When µ = 1
f1 is the absolute sigmoid function, and when µ = 2, f1 is the square root
sigmoid function. When µ = 1.5 the function approximates the arctangent func-
tion, when µ = 2.9 it approximates the logistic function, and when µ = 3.4
it approximates the error function. Parameter µ is estimated in the likelihood
maximization ([23]). For more see [23].

Next we study the particular generator sigmoid function

f2 (x) =
x(

1 + |x|λ
) 1
λ

, λ is an odd number, x ∈ R. (49)

We have that f2 (0) = 0, and

f2 (−x) = −f2 (x) , (50)

so f2 is symmetric with respect to zero.
When x ≥ 0, we get that ([15])

f ′2 (x) =
1

(1 + xλ)
λ+1
λ

> 0, (51)

that is f2 is strictly increasing on [0,+∞) and f2 is strictly increasing on (−∞, 0].
Hence f2 is strictly increasing on R.

We also have f2 (+∞) = f2 (−∞) = 1.
Let us consider the activation function ([15]):

ψ4 (x) =
1

4
[f2 (x+ 1)− f2 (x− 1)] =

1

4

 (x+ 1)(
1 + |x+ 1|λ

) 1
λ

− (x− 1)(
1 + |x− 1|λ

) 1
λ

 . (52)

Clearly it holds ([15])

ψ4 (x) = ψ4 (−x) , ∀ x ∈ R. (53)

and

ψ4 (0) =
1

2 λ
√

2
, (54)

and ψ4 (x) > 0, ∀ x ∈ R.
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Following [15], we have that ψ4 is strictly decreasing over [0,+∞), and ψ4

is strictly increasing on (−∞, 0], by ψ4-symmetry with respect to y-axis, and
ψ′4 (0) = 0.

Clearly it is

lim
x→+∞

ψ4 (x) = lim
x→−∞

ψ4 (x) = 0, (55)

therefore the x-axis is the horizontal asymptote of ψ4 (x) .
The value

ψ4 (0) =
1

2 λ
√

2
, λ is an odd number, (56)

is the maximum of ψ4, which is a bell shaped function.
We need

Theorem 2.11. ([15]) It holds

∞∑
i=−∞

ψ4 (x− i) = 1, ∀ x ∈ R. (57)

Theorem 2.12. ([15]) We have that∫ ∞
−∞

ψ4 (x) dx = 1. (58)

So that ψ4 (x) is a density function on R.
We need

Theorem 2.13. ([15]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
 j = −∞

: |nx− j| ≥ n1−α

ψ4 (nx− j) < 1

2λ (n1−α − 2)
λ
, (59)

where λ ∈ N is an odd number.

We introduce (see also [19])

Z4 (x1, ..., xN ) := Z4 (x) :=
N∏
i=1

ψ4 (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (60)

It has the properties:
(i) Z4 (x) > 0, ∀ x ∈ RN ,
(ii)

∞∑
k=−∞

Z4 (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z4 (x1 − k1, ..., xN − kN ) = 1,

(61)
where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence
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(iii)
∞∑

k=−∞

Z4 (nx− k) = 1, (62)

∀ x ∈ RN ; n ∈ N,
and
(iv) ∫

RN
Z4 (x) dx = 1, (63)

that is Z4 is a multivariate density function.
(v) It is clear that

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

Z4 (nx− k) <
1

2λ (n1−β − 2)
λ

=: c4 (β, n) , (64)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN , λ is odd.
For f ∈ C+

B

(
RN
)

(continuous and bounded functions from RN into R+), we
define the first modulus of continuity

ω1 (f, δ) := sup
x, y ∈ RN
‖x− y‖∞ ≤ h

|f (x)− f (y)| , h > 0. (65)

Given that f ∈ C+
U

(
RN
)

(uniformly continuous from RN into R+, same defini-
tion for ω1), we have that

lim
h→0

ω1 (f, h) = 0. (66)

When N = 1, ω1 is defined as in (65) with ‖·‖∞ collapsing to |·| and has the
property (66).

3. Main Results

We need

Definition 3.1. Let L be the Lebesgue σ-algebra on RN , N ∈ N, and the
set function µ : L → [0,+∞), which is assumed to be monotone, submod-
ular and strictly positive. For f ∈ C+

B

(
RN
)
, we define the general multi-

variate Kantorovich-Choquet type neural network operators for any x ∈ RN
(j = 1, 2, 3, 4):

jK
µ
n (f, x) = jK

µ
n (f, x1, ..., xN ) := (67)

∞∑
k=−∞

 (C)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k) =
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∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

 (C)
∫ 1
n

0
...
∫ 1
n

0
f
(
t1 + k1

n , t2 + k2
n , ..., tN + kN

n

)
dµ (t1, ..., tN )

µ
([

0, 1
n

]N)


(
N∏
i=1

ψj (nxi − ki)

)
,

where x = (x1, ..., xN ) ∈ RN , k = (k1, ..., kN ), t = (t1, ..., tN ), n ∈ N.
Clearly here µ

([
0, 1

n

]N)
> 0, ∀ n ∈ N.

Above we notice that
‖jKµ

n (f)‖∞ ≤ ‖f‖∞ , (68)

so that jK
µ
n (f, x) is well-defined, j = 1, 2, 3, 4.

We make

Remark 3.1. Let f ∈ C+
B

(
RN
)
, t ∈

[
0, 1

n

]N
and x ∈ RN , then

f

(
t+

k

n

)
= f

(
t+

k

n

)
− f (x) + f (x) ≤

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣+ f (x) ,

hence

(C)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t) ≤

(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) + (C)

∫
[0, 1n ]

N
f (x) dµ (t) = (69)

(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) + f (x)µ

([
0,

1

n

]N)
.

That is

(C)

∫
[0, 1n ]

N
f

(
t+

k

n

)
dµ (t)− f (x)µ

([
0,

1

n

]N)
≤

(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) . (70)

Similarly, we have that

f (x) = f (x)− f
(
t+

k

n

)
+ f

(
t+

k

n

)
≤
∣∣∣∣f (t+

k

n

)
− f (x)

∣∣∣∣+ f

(
t+

k

n

)
.

Hence

(C)

∫
[0, 1n ]

N
f (x)µ (dt) ≤

(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) + (C)

∫
[0, 1n ]

N
f

(
t+

k

n

)
µ (dt) ,

and

f (x)µ

([
0,

1

n

]N)
− (C)

∫
[0, 1n ]

N
f

(
t+

k

n

)
µ (dt) ≤
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(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) . (71)

By (70) and (71) we derive that∣∣∣∣∣(C)

∫
[0, 1n ]

N
f

(
t+

k

n

)
µ (dt)− f (x)µ

([
0,

1

n

]N)∣∣∣∣∣ ≤
(C)

∫
[0, 1n ]

N

∣∣∣∣f (t+
k

n

)
− f (x)

∣∣∣∣ dµ (t) . (72)

In particular, it holds∣∣∣∣∣∣
 (C)

∫
[0, 1n ]

N f
(
t+ k

n

)
µ (dt)

µ
([

0, 1
n

]N)
− f (x)

∣∣∣∣∣∣ ≤
(C)

∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)

µ
([

0, 1
n

]N) .

(73)

We present the following approximation result.

Theorem 3.2. Let f ∈ C+
B

(
RN
)
, 0 < β < 1, x ∈ RN , N,n ∈ N with n1−β > 2;

j = 1, 2, 3, 4. Then
i)

sup
µ
|jKµ

n (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2 ‖f‖∞ cj (β, n) =: ρjn, (74)

and
ii)

sup
µ
‖jKµ

n (f)− f‖∞ ≤ ρjn. (75)

Given that f ∈
(
C+
U

(
RN
)
∩ C+

B

(
RN
))
, we obtain lim

n→∞ jK
k
n (f) = f , uniformly.

Above cj (β, n) are as in (17), (32), (47) and (64), respectively.

Proof. We observe that
|jKµ

n (f, x)− f (x)| =∣∣∣∣∣∣
∞∑

k=−∞

 (C)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k)−

∞∑
k=−∞

f (x)Zj (nx− k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

k=−∞

 (C)
∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
− f (x)

Zj (nx− k)

∣∣∣∣∣∣ ≤ (76)

∞∑
k=−∞

∣∣∣∣∣∣
 (C)

∫
[0, 1n ]

N f
(
t+ k

n

)
dµ (t)

µ
([

0, 1
n

]N)
− f (x)

∣∣∣∣∣∣Zj (nx− k)
(73)

≤

∞∑
k=−∞

 (C)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k) =
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∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤

1
nβ

 (C)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k) +

(77)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

 (C)
∫
[0, 1n ]

N

∣∣f (t+ k
n

)
− f (x)

∣∣ dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k) ≤

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤

1
nβ

 (C)
∫
[0, 1n ]

N ω1

(
f, ‖t‖∞ +

∥∥ k
n − x

∥∥
∞

)
dµ (t)

µ
([

0, 1
n

]N)
Zj (nx− k) +

2 ‖f‖∞


∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Zj (|nx− k|)

 (by (17), (32), (47), (64))

≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2 ‖f‖∞ cj (β, n) , (78)

proving the claim. �

Additionally we give

Definition 3.3. Denote C+
B

(
RN ,C

)
= {f : RN → C|f = f1 + if2, where

f1, f2 ∈ C+
B

(
RN
)
}. We set for f ∈ C+

B

(
RN ,C

)
that

jK
µ
n (f, x) := jK

µ
n (f1, x) + i jK

µ
n (f2, x) , (79)

∀ n ∈ N, x ∈ RN ; j = 1, 2, 3, 4; i =
√
−1.

We give

Theorem 3.4. Let f ∈ C+
B

(
RN ,C

)
, f = f1 + if2, N ∈ N, 0 < β < 1, x ∈ RN ,

n ∈ N with n1−β > 2; j = 1, 2, 3, 4. Then
i)

sup
µ
|jKµ

n (f, x)− f (x)| ≤
(
ω1

(
f1,

1

n
+

1

nβ

)
+ ω1

(
f2,

1

n
+

1

nβ

))
+2 (‖f1‖∞ + ‖f2‖∞) cj (β, n) =: γjn, (80)

and
ii)

sup
µ
‖jKµ

n (f)− f‖∞ ≤ γjn.
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Proof. We have that

|jKµ
n (f, x)− f (x)| = |jKµ

n (f1, x) + i jK
µ
n (f2, x)− f1 (x)− if2 (x)| =

|(jKµ
n (f1, x)− f1 (x)) + i (jK

µ
n (f2, x)− f2 (x))| ≤

|jKµ
n (f1, x)− f1 (x)|+ |jKµ

n (f2, x)− f2 (x)|
(74)

≤(
ω1

(
f1,

1

n
+

1

nβ

)
+ 2 ‖f1‖∞ cj (β, n)

)
+ (81)(

ω1

(
f2,

1

n
+

1

nβ

)
+ 2 ‖f2‖∞ cj (β, n)

)
,

proving the claim. �

We need

Definition 3.5. Let L∗ be the Lebesgue σ-algebra on R, and the set function
µ∗ : L∗ → [0,+∞], which is assumed to be monotone, submodular and strictly
positive. For f ∈ C+

B (R), we define the general univariate Kantorovich-Choquet
type neural network operator for any x ∈ R (j = 1, 2, 3, 4):

jM
µ∗

n (f, x) =

∞∑
k=−∞

(
(C)

∫ 1
n

0
f
(
t+ k

n

)
dµ∗ (t)

µ∗
([

0, 1
n

]) )
ψj (nx− k) . (82)

Clearly here µ∗
([

0, 1
n

])
> 0, ∀ n ∈ N.

Above we notice that ∥∥∥jMµ∗

n (f)
∥∥∥
∞
≤ ‖f‖∞ , (83)

so that jM
µ∗

n (f, x) is well-defined, j = 1, 2, 3, 4.

Notice that jK
µ
n , when N = 1, collapses to jM

µ∗

n , j = 1, 2, 3, 4.

It follows another appropiate result.

Corollary 3.6. (to Theorem 3.2 when N = 1)
Let f ∈ C+

B (R), 0 < β < 1, x ∈ R; n ∈ N with n1−β > 2; j = 1, 2, 3, 4. Then
i)

sup
µ∗

∣∣∣jMµ∗

n (f, x)− f (x)
∣∣∣ ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2 ‖f‖∞ cj (β, n) =: εjn, (84)

and
ii)

sup
µ

∥∥∥jMµ∗

n (f)− f
∥∥∥
∞
≤ εjn. (85)

Given that f ∈
(
C+
U (R) ∩ C+

B (R)
)
, we obtain lim

n→∞ jM
µ∗

n (f) = f , uniformly.

Above cj (β, n) are as in (17), (32), (47) and (64), respectively.

Proof. As similar to Theorem 3.2 is omitted. �

We need
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Definition 3.7. Let f ∈ C+
B (R,C) where f = f1 + if2 with f1, f2 ∈ C+

B (R).
We set

jM
µ∗

n (f, x) := jM
µ∗

n (f1, x) + i jM
µ∗

n (f2, x) , (86)

∀ n ∈ N, x ∈ R; j = 1, 2, 3, 4.

We finish with

Corollary 3.8. (to Theorem 3.4 when N = 1) Let f ∈ C+
B (R,C), f = f1 + if2,

0 < β < 1, x ∈ R, n ∈ N with n1−β > 2; j = 1, 2, 3, 4. Then
i)

sup
µ∗

∣∣∣jMµ∗

n (f, x)− f (x)
∣∣∣ ≤ (ω1

(
f1,

1

n
+

1

nβ

)
+ ω1

(
f2,

1

n
+

1

nβ

))
+

2 (‖f1‖∞ + ‖f2‖∞) cj (β, n) =: δjn, (87)

and
ii)

sup
µ∗

∥∥∥jMµ∗

n (f)− f
∥∥∥
∞
≤ δjn.

Proof. As similar to Theorem 3.4 is omitted. �
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