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RISK-MINIMIZING HEDGING FOR A SPECIAL

CONTINGENTS†
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Abstract. In this paper, we consider a risk-minimization hedging problem
for a special European contingent claims. The existence and uniqueness of

strategy are given constructively. Firstly, a non-standard European contin-

gent is demonstrated as stochastic payment streams. Then the existence of
the risk minimization strategy and also the uniqueness are proved under two

kinds market information by using Galtchouk-Kunita-Watanabe decompo-

sition and constructing a 0-achieving strategy risk-minimizing strategies in
full information. And further, we have proven risk-minimizing strategies

exists and is unique under restrict information by constructing a weakly

mean-selffinancing strategy..
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1. Introduction

Taking conditional Mean square error process of the cost of the investment
portfolio as a risk measurement is introduced by Föllmer,Sondermann [1]in 1986,.
Since then, the risk-minimizing and local risk-minimizing became one of the most
popular standard for the pricing and hedging. [2]-[6] studied risk-minimizing and
local risk-minimizing for a T-contingent claim. The risk-minimizing for rein-
surance contracts in diffusion approximation and equity-indexed annuity under
Markov regime switching model are considered respectively in [7] and [8]. How-
ever after carefully checking the existing literature, most of them are for hedging
standard European contingent under complete information. Few of them involve
incomplete information or the non-standard European contingent. In fact in the
financial and insurance market, non-standard European contingent claims and
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incomplete information can be seen everywhere. Life insurance contract hold-
ers or the investors who have several European contingent claims with different
expiration date be sure to face hedging a non-standard European contingent.
In actual financial markets there do exist some investors who can only know
partial information for its own conditions limitations(for example the remote
investors can not get and understand the national investment policy, some con-
struction planning and related information in time while the general investor do
know; Some of the listed company’s financial disclosure information once several
months,for example three months. It make investors’s market information lag,
and cause market information acquisition not congruent). They may just know
partial market information (such as only prices of risky assets information). This
has caused investors incomplete information. The previous two kind of problem
has caused the attention of researchers. In complete information, [4],[5],[9] study
respectively risk and local minimal risk of strategy for the insurance compen-
sation contingent claims. [10] discuss dynamic hedging of counter-party risk
for a portfolio of credit derivatives by the local risk-minimization approach and
recover a closed-form representation for the locally risk minimizing strategy in
terms of classical solutions to nonlinear recursive systems of Cauchy problems.
[2]and [11] study how to hedge European with incomplete information. This
paper also studies risk-minimizing hedging strategy. Compare with [2]and [11],
we discuss hedging contingent claims with stochastic payment stream under in-
complete information. Relative to the standard European contingent claims,
with random pay flow payoff of the contingent claims can happen at any point
in [0, T ]. And thus hedging the European contingent claims is more complex.
In the paper we first assume that there are two investors with different market
information (complete information and incomplete information). By Galtchouk-
Kunita-Watanabe decomposition and projection theorem in L2 space, we show
that risk minimization hedging strategies for investors with incomplete informa-
tion exists and is unique. Furthermore, the constructing methods for optimal
strategies is given.

2. Problem Formulation

Consider a financial markets with only two assets. One is risk-free asset with
price Bt. The other is risky asset, denoted by (Xt). We demonstrate the market
by probability space {Ω ,F, P} with a filter F . Ft is the valid market information
up to t. Assume F = (F t)0≤t≤T satisfies common hypothesis. By the invariable
law of Numeraire change ,we can assume Bt ≡ 1 for simplicity, i.e. (Xt) is
the discounted price process. Moreover, we suppose that (Xt) is a local square-
integrable F-local martingale. We suppose that there is some investors who
can not capture full valid market information for themselves limited conditions
and can get less market information. G: G ⊂ F . Assume that the investors
hold some financial contracts,such as European options with different maturity,
insurance contract etc. The investor then faces payment at any time during
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[0, T ], in other words , there is a payment stream. We demonstrate the payment
by L2(G, P )− process H = (Ht)0≤t≤T . With the stochastic payment stream, the
investor will face a random loss. For avoiding or reducing the future stochastic
losses, hedgers will as far as possible use the market existing financial assets
to construct a investment strategies. Because financial markets are often not
complete, contingent claims is sometimes not replicated and hedging strategies
do not completely eliminate contingent claims brought by random risk. To
determine the optimal strategy, all kinds of risk standard are put forwarded.

Here, we select the optimal strategy from the point of the minimizing con-
ditional mean square error of the cost process. Our goal is to find the risk-
minimizing hedging strategies. Because G− risk-minimizing strategies is to be
considered, we give the following assumptions.

XT is GT −measureable, H is G-adaptable.
Remark 2.1. Since an investor is sure to know himself instant stochastic pay-
ments at time t, we suppose that His G− adaptable. The assumption XT is
GT− measureable is also reasonable. Since every investor must know the total
value of his portfolio and only hold a risk assets XT from beginning to end, the
terminal wealth XT must be GT− measurable.

Definition 2.1. Denote by Θ(F) the set of F− predictable processes with

E[
∫ T

0
ϑ2
sd⟨X⟩s] < +∞, i.e.

Θ(F) =

{
ϑ

∣∣∣∣ E
[∫ T

0

ϑ2
sd⟨X⟩s

]
< +∞, moreover ϑ is F- predictable

}
.

Similarly, we can define Θ(G).
Definition 2.2. φ = (ϑ, η) is called a F-strategy,if ϑ, η ∈ Θ(F).

Similarly, we can define a G-strategy.
Definition 2.3. For payments stream H = (Ht)0≤t≤T , the accumulative cost
process of φ = (ϑ, η) is defined as

CH
t (φ)=̂Ht + Vt(φ)−

∫ t

0

ϑsdXs,

where Vt(φ)=̂ϑt ·Xt + ηt is also known as the value process of φ = (ϑ, η).

Definition 2.4. For payments stream H = (Ht)0≤t≤T , the risk process of a
F-strategy φ = (ϑ, η)

RH,F
s (φ) = E[(CH

T (φ)− CH
s (φ))2|Fs].

Definition 2.5. A strategy φ = (ϑ, η) is called risk minimization strategy, if

for any φ̂ = (ϑ̂, η̂) satisfies the conditions as follows: for t ∈ [0, T ],
VT (φ̂) = VT (φ), (1)

η̂s = ηs, s < t,

ϑ̂s = ϑs, s ≥ t,
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Rt(φ̂) ≥ Rt(φ) holds.

Theorem 2.6. Let H = (Ht)0≤t≤T be a given payments stream. For F-strategy

φ = (ϑ, η) and any t ∈ [0, T ], there is another F-strategy φ̂ = (ϑ̂, η̂) such that VT (φ̂) = VT (φ),
CH

s (φ̂) = E[CH
T (φ̂)|Fs],

RH,F
s (φ̂) ≤ RH,F

s (φ).

Proof. Let ϑ̂ = ϑ,

η̂s =

{
ηs, s < t,

E[VT (φ) +HT −
∫ T

0
ϑudXu|Fs] +

∫ t

0
ϑudXu − ϑs ·Xs −Hs, s ≥ t.

Then

Vs(φ̂) =

{
Vs(φ), s < t,

E[VT (φ) +HT −
∫ T

0
ϑudXu|Fs] +

∫ t

0
ϑudXu −Hs, s ≥ t.

Thus

CH
T (φ̂) = VT (φ̂) +HT −

∫ T

0
ϑ̂udXu = VT (φ) +HT −

∫ T

0
ϑudXu = CH

T (φ).

Hence, in case s ≥ t, we have

CH
s (φ̂)

= Vs(φ̂) +Hs −
∫ s

0
ϑ̂udXu = E[VT (φ) +HT −

∫ T

0
ϑudXu|Fs]

+
∫ t

0
ϑudXu −

∫ t

0
ϑ̂udXu

= E[VT (φ) +HT −
∫ T

0
ϑudXu|Fs] = E[CH

T (φ)|Fs].

Therefore, in case s ≥ t,

RH,F
s (φ̂) = E[(CH

T (φ̂)− CH
s (φ̂))2|Fs]

= E[(CH
T (φ)− CH

s (φ) + CH
s (φ)− CH

s (φ̂))2|Fs]
= E[(CH

T (φ)− Cs(φ)
2|Fs]

+E[(CH
s (φ)− CH

s (φ̂))2|Fs]
+E[2(CH

T (φ)− CH
s (φ))(CH

s (φ)− CH
s (φ̂))|Fs]

= RH,F
s (φ)− (CH

s (φ)− CH
s (φ̂))2 ≤ RH,F

s (φ).

□

Remark 2.2. We know by theorem 2.6 a risk minimization strategy must be
mean self-financing (i.e. CH

s (φ̂) = E[CH
T (φ̂)|Fs]).

Definition 2.7. we call a strategy φ = (ϑ, η) 0-achieving, if

VT (φ) = ηT +

∫ T

0

ϑsdXs = 0.

Since hedging is for the special contingent claims with stochastic payment
stream, we modifies general risk-minimizing hedging problems which are for
general European claims and define the following problems
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(HF) risk minimization hedging problems with complete market information(F-
risk-minimizing hedging problems ): Find a 0-achieving F-risk-minimizing strat-
egy;

(HR) risk-minimizing hedging problems with restricted information (G-risk-
minimizing hedging problems): Find a 0-achieving G-risk-minimizing strategy.

3. Risk-minimizing Hedging Strategies for Full Information

Here we assume investors can hold all the market information in time, and
determine their own investment strategy based on the information.

we suppose that investors can know market information in time and based
on it select theirs portfolio strategies according to their own information. As
the preceding Ft represents all market valid information up to the time of t, So
solving the minimum set of risk strategy problems under complete information
is essentially looking for a 0-achieving F makes the market risk RH

φ minimum.

Lemma 3.1 (Galtchouk-Kunita-Watanabe decomposition [2]). For any Y ∈
L2(F , P ), it an only be written as

Y = E[H|F0] +

∫ T

0

ϑY dXs + LY , (2)

where ϑY is F-adapted, LY = (LY
t ) is a squared integrable martingale with

Y0 = 0 and strongly orthogonal to X

Lemma 3.2. For a given payment stream H = (HT )0≤T≤T , If a strategy of
φ = (ϑ, η) is average self-funded and 0-achieving, Then φ = (ϑ, η) is uniquely
determined by ϑ.

Proof. By the theorem conditions, we know

CH
s (φ) = E[CH

T (φ)|Fs], VT (φ) = 0. (3)

ηs = CH
s −Hs +

∫ s

0

ϑtdXt − ϑs ·Xs

= E[CH
T (φ)|Fs]−Hs +

∫ s

0

ϑtdXt − ϑs ·Xs

= E[HT −
∫ T

0

ϑtdXt|Fs]−Hs +

∫ s

0

ϑtdXt − ϑs ·Xs

= E[HT −Hs −
∫ T

s

ϑtdXt|Fs]− ϑs ·Xs.

The Lemma 3.2 is proved. □

Theorem 3.3. For a given payment stream H = (Ht)0≤t≤T , the unique solution
of question A) is φ = (ϑ, η).

ϑt = ϑHT
t , ηt = V HT

t − ϑHT
t ·Xt,
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where V HT
t = E[HT |F0] +

∫ t

0
ϑHT
s dXs + LHT

t − Ht, 0 ≤ t ≤ T, ϑHT , LHT is
determined by (2).

Further the cost process of the risk minimum strategy is CH
t (φ) = E[HT |F0]+

LHT
t , 0 ≤ t ≤ T, the risk-minimizing process is RH,F

s (φ) = E[(LHT

T −LHT
s )2|Fs].

Proof. Obviously, VT (φ) = ηT + ϑHT

T · XT = V HT

T = HT − HT = 0, so φ is
0-achieving. Since ϑ = ϑHT , η = V HT − ϑHT ·X, we have

CH
t (φ) = V H

t +Ht −
∫ t

0

ϑsdXs = E[HT |F0] + LHT
t ,

RH
s (φ) = E[(CH

T (φ)− CH
t (φ))2|Fs] = E[(LHT

T − LHT
s )2|Fs].

Assume that there is another 0-achieving strategy φ̂ which is the risk-minimizing,
it is known from the remark of Theorem 2.6,

CH
s (φ̂) = E[CH

T (φ̂)|Fs].

Because φ̂ is 0-achieving strategy and
∫ .

0
ϑ̂tdXt is a martingale, we have

CH
T (φ̂)− CH

s (φ̂) = HT +

∫ T

0

ϑ̂tdXt − E

[
HT +

∫ T

0

ϑ̂tdXt|Fs

]

=

∫ s

0

ϑHT dXt + LHT

T +

∫ T

0

ϑ̂tdXs − E

[∫ T

0

ϑHT dXt + LHT

T +

∫ T

0

ϑ̂tdXt|Fs

]

= LHT

T − LHT
s +

∫ T

s

(ϑHT − ϑ̂)dXt.

Then

RH,F
s (φ̂) = E[(CH

T (φ)− CH
s (φ))2|Fs]

= E[(LHT

T − LHT
s +

∫ T

s

(ϑHT − ϑ̂)dXt)
2|Fs]

= E[(LHT

T − LHT
s )2|Fs] + E[(

∫ T

s

(ϑHT
t − ϑ̂t)dXt)

2|Fs]

= RH,F
s (φ) + E[(

∫ T

s

(ϑHT
t − ϑ̂t)dXt)

2|Fs] ≥ RH,F
s (φ).

Therefore, the available strategy of φ = (ϑ, η) is risk-minimizing.
Next, we prove the the solution of question (HF) is unique. Assume that

there is also another 0-achieving F-strategy φ̃ with Minimum risk RH
s (φ̃) =

E[(LHT

T − LHT
s )2|Fs], Tt is known from the above formula ϑ̃t = ϑHT

t . Since the
risk-minimizing strategy must be mean self-financing, it is known by Lemma 3.2
φ̃ = φ. That is, the solution to problem (HF) is unique. □
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4. Risk-minimizing Hedging Strategies for Restricted Information

This section assumes that hedgers can not be informed of all market infor-
mation F in a timely manner due to condition constraints, and only partial
market information G ⊂ F is available for them. Therefore, the hedger can
only build his hedging strategy based on his own information set of G. In math-
ematical terms, his hedging strategy should be G-adapted. Since X is no longer
G-adapted, so for filtering G, HT no longer exists Kunita–Kunita-Watanabe de-
composition. That is to say, ϑY in (2) is not G-adapted. Therefore, to solve
the problem (HR), we must take a different approach from the problem (HF).
Follow the idea of Schweizer[2], first of all, we prove a useful Lemma.

Lemma 4.1. Let H = (Ht)0≤t≤T is a given payment stream. For any strategy

φ = (ϑ, η) and t ∈ [0, T ], There’s another strategy φ̂ = (ϑ̂, η̂) such that
VT (φ̂) = VT (φ), P-a.s.,

η̃s = ηs, s < t,
0 = E[CT (φ̂)− Cs(φ̂)|Gs],

RH,G
s (φ̂) ≤ RH,G

s (φ).

Proof. Set ϑ̂s = ϑs, s ∈ [0, T ]. Let J is the G− optional projection of V + H,
Kt = E[VT +HT |Gt]( Without loss of generality, we can take its right continuous
form). Set

η̂s=̂Vs(φ) + (Ks − Js)I[t,T ](s)− ϑs ·Xs.

From this we can see φ̂ = (ϑ̂, η̂) is an investment strategy and we have when
s < t, η̂s = ηs, and when s ≥ t

η̂s = E(η̂s|Gs) = E(Vs(φ) +Ks − Js − ϑs ·Xs|Gs)

= E(VT (φ) +HT −Hs − ϑs ·Xs|Gs). (4)

Since HT , XT is G-measurable, we have VT (φ̂) = VT (φ) P-a.s. From the defini-
tion of φ̂, we have when s ≥ t,

CH
T (φ̂)− CH

s (φ̂) = VT (φ̂) +HT − Vs(φ̂)−Hs −
∫ T

s

ϑ̂tdXt (5)

= VT (φ) +HT − Vs(φ)−Hs −
∫ T

s

ϑ̂tdXt + Js −Ks (6)

= CH
T (φ̂)− CH

s (φ̂) + Js −Ks. (7)

and that when s ≥ t, E[CT (φ̂)− Cs(φ̂)|Gs] = 0. We also have from (7)that

RH,G
s (φ) = Rs(φ̂)

H,G + E[(Js −Ks)
2|Gs] ≤ RH,G

s (φ). (8)

□

Definition 4.2. For any strategy φ, the G− optional projection of the cost
process CH(φ) is denoted by CH,O(φ) . φ is weakly G-mean-selffinancing if
CH,O(φ) is a G−martingale.
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Remark 4.1. Known by the definition of an optional projection, weakly G-
mean-selffinancing implies

E[CH
T (φ̂)− CH

s (φ̂)|Gs] = 0, s ∈ [0, T ], (9)

and
η̂s = E(VT (φ) +HT −Hs − ϑs ·Xs|Gs), s ∈ [0, T ]. (10)

Lemma 4.3. If φ is G-risk-minimizing strategy, it is also weakly G-mean-
selffinancing.

Take t = 0,we construct φ as Lemma 4.1. Note that φ is G-risk-minimizing, we
know from (8) J is a modification of K. Note that J and K are right continuous,
then J and K are indistinguishable(see [12] for detail). Then we have

C(φ) = V (φ) +H −
∫

ϑdX = V (φ) +H − J +K −
∫

ϑdX.

Note that K and
∫
ϑdX are G-martingale and F-martingale respectively and

that J is the optional projectin of V +H, we know CH,O(φ) is a G-martingale.

Theorem 4.4. For a given H = (Ht)0≤t≤T , a 0-achieving strategy φ is G-risk-
minimizing if and only if φ is weakly G-mean-selffinancing and ϑ is the solution
to the optimization problem

min
γ∈ Θ(G)

(HT −
∫ T

0

γsdXs

)2
 . (11)

Further, G-risk-minimizing strategy exists and is unique.

Proof. Known from the space projection theorem on L2, a process ξ is the solu-
tion to the optimization problem (11) if and only if

E

[(
HT −

∫ T

0

ξsdXt

)∫ T

0

γtdXt

]
= 0, ∀ γ ∈ Θ(G). (12)

From the G-K-W decompositon of HT and that L is orthogonal to X, we know
the above equality is equivalent to

E

[(∫ T

0

(ϑHT
t − ξt)dXt

)∫ T

0

γtdXt

]
= 0, ∀ γ ∈ Θ(G), (13)

and then equivalent to

E

[(∫ T

s

(ϑHT
t − ξt)dXt

)∫ T

s

γtdXt|Gs

]
= 0, ∀ γ ∈ Θ(G), s ∈ [0, T ]. (14)

Further it is equivalent to

E

[(∫ T

s

γsdXs

)2

− 2

∫ T

s

(ϑHT
t − ξt)dXt

∫ T

s

γtdXt|Gs

]
≥ 0, ∀ γ ∈ Θ(G), s ∈ [0, T ].

(15)
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1) The proof of the necessity. If φ = (ϑ, η) is 0-achieving and G-risk-minimizing,
the φ = (ϑ, η) is G-mean selffinancing. For s ∈ [0, T ], we consider another strategy

δ = (ς, τ). Construct a strategy δ̂ = (ς̂ , τ̂) as lemma 4.1, we know that δ̂ = (ς̂ , τ̂)
satisfies(1). Note that (1), (4)and (10), we have τ̂ = η. Known from (1) we have
Vt(δ) = Vt(φ) and

CH
T (φ)− CH

s (φ) = VT (φ) +HT +

∫ T

0

ϑ̂tdXt − Vs(φ)−Hs −
∫ s

0

ϑ̂tdXt (16)

= CH
T (δ̂)− CH

s (δ̂) +

∫ T

s

(δt − ϑt)dXt. (17)

Since φ = (ϑ, η) is G-risk-minimizing, then

0 ≤ R
H,G(δ̂)
s −RH,G

s (φ)

= E

[(∫ T

s
(δt − ϑt)dXt

)2

− 2
(
CH

T (φ)− CH
s (φ)

) ∫ T

s
(δt − ϑt)dXt|Gs

]
= E

[(∫ T

s
(δt − ϑt)dXt

)2

− 2
∫ T

s
(ϑHT

t − ϑt)dXt

∫ T

s
(δt − ϑt)dXt|Gs

]
,

Take δ = ϑ+ γI(s,T ] we have (15), and then ϑ satisfies the optimization problem(11).
2) The proof of the sufficiency. Suppose ϑ satisfies the optimization problem(11)and

φ = (ϑ, η) is weakly G-mean-selffinancing. For a s ∈ [0, T ],we consider another strategy
δ = (ς, τ) : 

VT (δ) = VT (φ),
τs = ηs, s < t,
ςs = ϑs, s ≥ t,

As the proof of the necessity, we construct δ̂ = (ς̂ , τ̂). Then we have (17), and then

RH,G
s (δ̂)−RH,G

s (φ)

= E

[(∫ T

s

(δt − ϑt)dXt

)2

− 2

∫ T

s

(ϑHT
t − ϑt)dXt

∫ T

s

(δt − ϑt)dXt|Gs

]
. (18)

Since ϑ the solution to the optimization problem(11), then we have (15). If we take
γ = δ − ϑ in (15), then

0 ≤ RH,G
s (δ̂)−RH,G

s (φ) ≤ RH,G
s (δ)−RH,G

s (φ)

From the definition of the risk minimization strategy, we know φ = (ϑ, η) is risk-
minimizing. We know from [2]that Θ(G) is a closed subspace of L2(F), the the pro-
jection exists and is unique, G-risk-minimizing strategy existence and uniqueness.

For any finite variation process A, denote by AP,G the predictable dual projection
of process A.

□

Theorem 4.5. For a given stream of payments H = (Ht)0≤t≤T , there is a

unique 0-achieving G-risk-minimizing strategy φ̂H = (ϑ̂H , η̂H):

ϑ̂H
s =

d(
∫ .

0
ϑHT
u d⟨X⟩u)P,G

s

d⟨X⟩P,G
s

, (19)



296 Yang Jianqi, Jiang Qiuyan

η̂Hs = E
[
HT −Hs − ϑ̂H

s ·Xs|Gs

]
. (20)

Proof. We know from theorem 4.4 that risk-minimizing strategy φ̂H = (ϑ̂H , η̂H)

exists and is unique. Furthermore we know from (13) ϑ̂H satisfies

E

[(∫ T

0

(ϑHT
s − ϑ̂H

s )dXs

)∫ T

0

γsdXs

]
= 0, ∀γ ∈ Θ(G).

Therefore, ∀ γ ∈ Θ(G)

0 = E

[(∫ T

0

(ϑHT
s γs)d⟨X⟩s

)
−
∫ T

0

ϑ̂H
s γsd⟨X⟩s

]

= E

[∫ T

0

γsd

(∫ .

0

ϑHT
u d⟨X⟩u

)P,G

s

]
− E

[∫ T

0

ϑ̂H
s γsd⟨X⟩P,G

s

]
.

From the arbitrary of γ, we have

ϑ̂H
s =

d(
∫ .

0
ϑHT
u d⟨X⟩u)P,G

s

d⟨X⟩P,G
s

.

In addition, since the risk-minimizing strategy must be 0-achieving and mean-
selffinancing, then (20) holds from(10). □

5. Conclusions

Considering the widespread existence of undetermined interests with random
payment streams(such as insurance payments, etc.) in the real financial and
insurance markets, this paper proposes and resolves the risk-minimizing hedging
problem of this kind of undetermined rights and the existence and uniqueness of
strategy are given by constructiveness. Due to the consideration of non-standard
European undecided rights, this paper introduces a 0 -achieving strategy and
modify the usual risk minimization strategy definition. Under different infor-
mation conditions, the existence and uniqueness of risk-minimizing strategy are
proven by Galtchouk-Kunita decomposition and L2 spatial projection theorem
, and the construction method of the specific strategy are given.
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