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COMPLETE CONTROLLABILITY OF SEMILINEAR

STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH

INFINITE DELAY AND POISSON JUMPS
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Abstract. This manuscript deals with the exact (complete) controllabil-

ity of semilinear stochastic differential equations with infinite delay and

Poisson jumps utilizing some basic and readily verified conditions. The
results are obtained by using fixed-point approach and by using advance

phase space definition for infinite delay part. We have used the axiomatic

definition of the phase space in terms of stochastic process to consider the
time delay of the system. An infinite delay along with the Poisson jump is

the new investigation for the given stochastic system. An example is given
to illustrate the effectiveness of the results.
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1. Introduction

Controllability concepts play a vital role in deterministic control theory. It
is well known that controllability of deterministic equations is widely used in
many fields of science and technology. But in many practical systems such
a fluctuating stock prices or physical system subject to thermal fluctuations,
population dynamics etc, some randomness appear, so the system should be
modeled by a stochastic form.

In setting of deterministic systems: Kalman [13] introduced the concept of
controllability for finite-dimensional deterministic linear control systems. The
basic concepts of control theory in finite and infinite-dimensional spaces have
been introduced in [2]. In [28] Naito established sufficient conditions for approx-
imate controllability of deterministic semi-linear control system dominated by
the linear part using Schauder’s fixed point theorem. Balachandran and Dauer
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[3] studied the controllability of nonlinear systems in Banach spaces. However,
in many cases, some kind of randomness can appear in the problem, so that the
system should be modeled by a stochastic form. Only few authors have stud-
ied the extensions of deterministic controllability concepts to stochastic control
systems [14, 20, 22, 24].

In setting of stochastic systems: In [4] Bashirov et al. provides some concepts
for controllability of linear stochastic systems. Using these concepts, Mahmu-
dov [24] established sufficient conditions for controllability of linear stochastic
systems in Hilbert spaces. In [21]-[26], Mahmudov et al. established results
for controllability of linear and semi-linear stochastic systems in Hilbert spaces.
In [34] Sukavanam et al. obtained some results for stochastic controllability of
an abstract first order semi-linear control system using Schauder’s fixed point
theorem. Sakthivel et al. [33] studied the controllability of nonlinear stochastic
systems in finite-dimensional spaces using Banach fixed-point theorem.

Now, in the last few decades, stochastic differential equations with Poisson
jumps have witnessed a growing interest. To be more precise, in [30] Sakthivel
established results for complete controllability of stochastic evolution equations
with jumps in a separable Hilbert space. Recently, Shukla and Sukavanam et al.
[31] studied the complete controllability of semi-linear stochastic system with de-
lay using Banach fixed point theorem. Diop, et.al [8] studied the stability results
for a partial impulsive stochastic integrodifferential equations with infinite delay;
Dimplekumar et.al [6] studied the Approximate controllability of impulsive frac-
tional neutral evolution equations with infinite delay in Banach spaces. Anguraj
and Ramkumar [1] discussed approximate controllability of semi-linear stochas-
tic integrodifferential system with nonlocal conditions through Sadovskii’s fixed
point theorem.

Moreover, Numerous practical systems (such as sudden price variations [jumps]
like earthquakes, market crashes, hurricanes and so on) may undergo some jump
type stochastic perturbations. For examples if a system jumps from a “normal
state” to a “bad state” the paths are not being continuous then it is seize to
consider stochastic processes with jumps in describing such models. Stochas-
tic differential equations with Poisson jumps are examined by several authors
[19, 29, 27].

Also, it has been observed that the existence or the controllability results
proved by different authors are through an axiomatic definition of the phase
space given by Hale and Kato [11]. However, as remarked by Hino, Murakami,
and Naito [12], it has come to our attention that these axioms for the phase
space are not correct for the systems with infinite time or state dependent delay.

Motivated by these facts, our main purpose in this paper is to study the com-
plete controllability of semi-linear stochastic differential equations with delay
and Poisson jumps. However, to the best of our knowledge, there are no results
on the complete controllability of semi-linear stochastic differential equations
with infinite delay and Poisson jumps as treated in the current paper.
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Highlights:

(1) Complete controllability of semi-linear stochastic differential equations
with time dependent delay and Poisson jumps has been studied. No
literature is reported so far in this direction.

(2) Advanced definition of phase space has been used particularly for infinite
time delay part of the system. Researchers are using the phase space
defined by Hall and Kato [11] for infinite delay but we claim that it is
wrong due to Hino, Murakami, and Naito [12]. For more detail pl refer
to [5].

(3) An example is given to illustrate the theory. Detailed future work is
mentioned in the conclusion part.

Consider a stochastic differential equations with infinite time dependent delay
and Poisson jumps given in the form :

dy(t) =

[
Ay(t) +Bu(t) +

∫ t

0

Q(t− s)y(s)ds+ f(t, y(t− h))

]
dt

+ σ(t, y(t− h))dw(t) +

∫
Z
g(t, y(t− h), z)Ñ(dt, dz), t ∈ J = [0, T ](1)

y(t) = ψ(t) ∈ Cb, t ∈ (−∞, 0], y(0) = y0 = ψ(0) (say) (2)

where A : D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous
semi-group of bounded linear operators R(t), t ≥ 0 on Hilbert space H. The
control function u(.) takes values in u ∈ L2

J(J, U), the space of admissible control
functions, U is a Hilbert space, B is a bounded linear operator from U into H and
Q(t) is a closed linear operator with domain D(Q(t)) ⊃ D(A). The functions
f : J × Cb → H; σ : J × Cb → L0

2 and g : J × Cb ×Z → H are nonlinear suitable
functions. Cb is defined later. For simplicity of considerations, we generally
assume that the set of admissible controls is Uad = L2

ℑ(J, U).

2. Preliminaries

Let (Ω,ℑ,P) be a complete probability space equipped with a normal filtration
ℑt, t ∈ J = [0, T ]. Let K be the separable Hilbert space with norm ∥.∥K. and
W is a Q-Wiener process on (Ω,ℑt,P) with the covariance operator Q such that
trQ < ∞. We use same notation ∥.∥ for the norm of L(K,H), where L(K,H)
denotes the space of all bounded linear operators from K into H, simply L(H)
if K = H. We assume that there exists a complete orthonormal system en in
K, a bounded sequence of non-negative real numbers λn such that Qen = λnen,
n = 1, 2, 3, · · · and a sequence βn of independent Brownian motions such that

W(t) =

∞∑
n=1

√
λnβn(t)en, t ∈ J = [0, T ]

and ℑt = ℑω
t , where ℑω

t is the σ-algebra generated byW. Let L0
2 = L2(Q

1/2K;H)
be the space of all Hilbert-Schmidt operators from Q1/2K to H. Then the space
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L0
2 is a separable Hilbert space equipped with the norm ∥ζ∥2L0

2
= tr(ζQζ∗). Let

Lℑ
2 (J,H) be the space of all ℑt-adapted, H-valued measurable square integrable

processes on J × Ω. Let C([0, T ];L2(ℑ,H)) be the Banach space of continuous

maps from [0, T ] into L2(ℑ,H) satisfying the condition supt∈J E ∥y(t)∥2 < ∞.
Let H2 is the closed subspace of C([0, T ];L2(ℑ,H)) consisting of measurable and
ℑt-adapted H valued processes ψ ∈ C([0, T ];L2(ℑ,H)) endowed with the norm

∥ψ∥H =

(
sup

t∈[0,T ]

E ∥ψ(t)∥2H

)1/2

.

Let {q = (q(t)), t ∈ Dq}, be a stationary ℑt-Poisson point process with character-
istic measure λ. Let N (dt, dz) be the Poisson counting measure associated with
q. Thus we have N =

∑
s∈Dq,s≤t IZ(q(s)) with a measurable set Z ∈ B(K−{0}),

which denotes the Borel σ field of K−{0}. Let Ñ (dt, dz) = N (dt, dz)−dtλ(dz) be
the compensated Poisson measure that is independent of W(t). Let P2([0, T ]×
Z;H) be the space of all predictable mappings g : [0, T ]×Z ×Ω → H for which∫ T

0

∫
Z
E ∥g(t, z)∥2H dtλ(dz) <∞.

Then, we can define the H-valued stochastic integral
∫ T

0

∫
Z g(t, z)Ñ(dt, dz),

which is a centered square-integrable martingale. Now, we define the abstract
phase space Cb [12]. Assume that b : (−∞, 0] → (0,+∞) is a continuous function

satisfying l =
∫ 0

−∞ b(t)dt < +∞. The Banach space (Cb, ∥.∥Cb
) induced by the

function b is defined as: Cb =
{
ψ : (−∞, 0] → H, for any a > 0,E(|ψ(θ)|2)1/2 is a

bounded and measurable function on [−a, 0] and
∫ 0

−∞ b(s) sup
s≤θ≤0

E(|ψ(θ)|2)1/2ds <

+∞
}
. If Cb is endowed with norm ∥ψ∥Cb

=
∫ 0

−∞ b(s) sups≤θ≤0 E(|ψ(θ)|2)1/2ds.
C((−∞, v],H) denote the space of all continuous H- valued stochastic process
{ξ(t), t ∈ (−∞, v]}. Let Cv = {y; y ∈ C((−∞, v],H), y0 = ψ ∈ Cb}.

Set ∥.∥v be a semi-norm defined by

∥x∥v = ∥x0∥Cb
+ sups∈[0,t]E|(x(s)|2)1/2, x ∈ Cv

Now, the corresponding linear system with respect to (1)-(2) is given by the
equation

dx(t) =

[
Ax(t) +Bu(t) +

∫ t

0

C(t− s)x(s)ds

]
dt (3)

x(0) = x0 (4)

Definition 2.1. A resolvent operator for (3)-(4) is a bounded linear operator
valued function R(t) ∈ L(X) for t ≥ 0, having the following properties:
(i) R(0) = I and |R(t)| ≤ λeβt for some constants λ and β.
(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
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(iii) R(t) ∈ L(Y) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1([0,+∞);X) ∩ C([0,+∞);Y)
and

R
′
(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds for t ≥ 0.

The resolvent operator plays an important role to study the existence of
solutions and to give a variation of constants formula for nonlinear systems.
We need to know that the linear system (3)-(4) has a resolvent operator. For
more details on resolvent operators, we refer to [10].

Definition 2.2. A stochastic process {y(t), t ∈ (−∞, v]} is a mild solution of
(1)-(2) if y0 = ψ ∈ Cb and for each u ∈ L2

ℑ([0, T ], U), it satisfies the following
integral equation:

y(t; y0, u) = R(t)y0 +

∫ t

0

R(t− s)[Bu(s) + f(s, y(s− h))]ds

+

∫ t

0

R(t− s)σ(s, y(s− h))dw(s)

+

∫ t

0

∫
Z
R(t− s)g(s, y(s− h), z)Ñ(ds, dz),

y(t; y0, u) = ψ(t) ∈ Cb for t ∈ (−∞, 0]. (5)

Let us introduce the following operators and sets (see [33]):
LT ∈ L(Uad,L2(Ω,ℑT ,H)) defined by

LTu =

∫ T

0

R(T − s)Bu(s)ds.

Then its adjoint operator L∗
T : L2(Ω,ℑT ,H) → Uad is given by

L∗
T z = B∗R∗(T − s)E {z|ℑt} .

The set of all states reachable in time T from initial state y(0) = y0 ∈ L2(Ω,ℑT ,H),
using admissible controls is defined as

RT (Uad) = {y(T ; y0, u) ∈ L2(Ω,ℑT ,H) : u ∈ Uad} ,

where

y(T ; y0, u) = R(T )y0 +

∫ T

0

R(T − s)Bu(s)ds+

∫ T

0

R(T − s)f(s, y(s− h))ds

+

∫ T

0

R(t− s)σ(s, y(s− h))dw(s)

+

∫ T

0

∫
Z
R(T − s))g(s, y(s− h), z)Ñ(ds, dz)
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Let us introduce the linear controllability operator ΨT
0 ∈ L

(
L2(Ω,ℑT ,H),

L2(Ω,ℑT ,H)
)
as follows:

ΨT
0 {·} = LT (LT )

∗ {·}

=

∫ T

0

R(T − t)BB∗R∗(T − t)E {.|ℑt} dt

The corresponding controllability operator for deterministic model is

ΓT
s = LT (s)L∗

T (s)

=

∫ T

0

R(T − t)BB∗R∗(T − t))dt

Definition 2.3. The stochastic dynamic system (1)-(2) is said to be completely
controllable on [0, T ] if

RT (Uad) = L2(Ω,ℑT ,H)

i.e., all points in L2(Ω,ℑT ,H) can be reached from the point y0 in time T .

Lemma 2.4. Let σ : [0, T ] × Ω → L0
2 be a strongly measurable mapping such

that
∫ T

0
E ∥σ(t)∥p dt <∞. Then

E

∥∥∥∥∫ t

0

σ(s)dw(s)

∥∥∥∥p ≤ Lσ

∫ t

0

E ∥σ(s)∥p ds, (6)

Lemma 2.5. (Schwartz inequality): Let ϕ1(x) and ϕ2(x) be any two square-
integrable real functions in [a, b], then[∫ b

a

ϕ1(x)ϕ2(x)dx

]2
≤

∫ b

a

[ϕ1(x)]
2
dx

∫ b

a

[ϕ2(x)]
2
dx

3. Main results

Lemma 3.1. Assume that the operator ΨT
0 is invertible. Then for arbitrary yT ∈

L2(Ω,ℑT ,H), f(·) ∈ L2([0, T ],H), σ(·) ∈ L2([0, T ],H) and g(·) ∈ L2([0, T ],H),
the control defined as

u(t) = B∗R∗(T − t)E
{
(ΨT

0 )
−1p(y)|ℑt

}
, (7)

where

p(y) = yT −R(t)y0 −
∫ T

0

R(T − s))f(s, y(s− h))ds

+

∫ T

0

R(T − s))σ(s, y(s− h))dw(s)

+

∫ T

0

∫
Z
R(T − s))g(s, y(s− h), z)Ñ(dt, dz)

transfers the system (1)-(2) from y0 ∈ H to the final state yT at time T , provided
the system (1)-(2) has a solution.
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Proof. By substituting (5) in (3), we can easily obtain,

y(t; y0, u) = R(t)y0 +

∫ t

0

R(t− s)BB∗R∗(T − s)E
{
(ΨT

0 )
−1p(y)|ℑs

}
ds

+

∫ t

0

R(t− s)f(s, y(s− h))ds+

∫ t

0

R(t− s)σ(s, y(s− h))dw(s)

+

∫ t

0

∫
Z
R(t− s))g(s, y(s− h), z)Ñ(dt, dz).

Hence, for a given final time t = T , we simply have the following equality:

y(T ; y0, u) = R(T )y0 +

∫ T

0

R(T − s))(BB∗R(T − s))E

{
(ΨT

0 )
−1

×

(
yT −R(T )y0 −

∫ T

0

R(T − s))f(s, y(s− h))ds

+

∫ T

0

R(T − s))σ(s, y(s− h))ds

+

∫ T

0

∫
Z
R(T − s)g(s, y(s− h), z)Ñ(ds, dz)

)}
| ℑsds

+

∫ T

0

R(T − s))f(s, y(s− h))ds

+

∫ T

0

R(T − s)σ(s, y(s− h))dw(s)

+

∫ T

0

∫
Z
R(T − s)g(s, y(s− h), z)Ñ(ds, dz)

Thus, taking into account the form of the operator ΨT
0 , we have

y(T ; y0, u) = R(T )y0 + (ΨT
0 )(Ψ

T
0 )

−1

(
yT −R(T )y0

−
∫ T

0

R(T − s)f(s, y(s− h))ds

+

∫ T

0

R(T − s)σ(s, y(s− h))dw(s)

+

∫ T

0

∫
Z
R(T − s)h(s, y(s− h), z)Ñ(ds, dz)

)
+

∫ T

0

R(T − s)f(s, y(s− h))ds

+

∫ T

0

R(T − s)σ(s, y(s− h))dw(s)
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+

∫ T

0

∫
Z
R(T − s)g(s, y(s− h), z)Ñ(ds, dz)

= yT .

Therefore, we see that the control u(t) transfers the system (1)-(2) from the
initial state y0 ∈ L2(Ω,ℑT ,H) to the final state yT ∈ L2(Ω,ℑT ,H) at time
T . □

Now we assume the following hypotheses:

(H1) f , σ and g satisfy the Lipschitz condition with respect to y. i.e.,

∥f(t, y1)− f(t, y2)∥2H + ∥σ(t, y1)− σ(t, y2)∥2H +∫
Z
∥g(t, y1, z)− g(t, y2, z)∥2H v(dz) ≤ C ∥y1 − y2∥2Cb

(H2) f , σ and g is continuous on [0, T ]×H and satisfies

∥f(t, y)∥2H + ∥σ(t, y)∥2H +

∫
Z
∥g(t, y, z)∥2H v(dz) ≤ C(1 + ∥y∥2Cb

)

(H3) There exists a number C̃0 > 0 such that for any arbitrary y1, y2 ∈ Cb,∫
Z
∥h(t, y1, z)− h(t, y2, z)∥4H v(dz) ≤ C0

(
∥y1 − y2∥4Cb

)
,∫

Z
∥h(t, y, z)∥4H v(dz) ≤ C0(1 + ∥y∥4Cb

)

(H4) The linear system corresponding to (1)-(2) is exactly controllable.

Let us define the nonlinear operator S : H2 → H2 for t ∈ (−∞, 0] as follows:

(Sαy)(t) = R(t)y0 +

∫ t

0

R(t− s)Bu(s)ds+

∫ t

0

R(t− s)f(s, y(s− h))ds

+

∫ t

0

R(t− s)σ(s, y(s− h))dw(s)

+

∫ t

0

∫
Z
R(t− s)g(s, y(s− h), z)Ñ(ds, dz)

y(t) = ψ(t) for t ∈ (−∞, 0]

From Lemma 3.1, the control u(t) transfers the system (1)-(2) from the initial
state y0 to the final state yT provided that the operator S has a fixed point. So,
if the operator S has a fixed point then the system (1)-(2) is exactly controllable.
Now for convenience, let us introduce the notation

n1 = max
{
∥R(t)∥2 : t ∈ [0, T ]

}
, n2 = ∥B∥2 ,

n3 = E ∥yT ∥2 , M = max
∥∥ΠT

0

∥∥2
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Lemma 3.2. For every v ∈ L2(Ω,ℑT ,H), there exists a process φ(·) ∈
L2([0, T ],H) such that

v = Ev +

∫ T

0

φ(s)dw(s)

ΨT
0 v = ΓT

0 Ev +

∫ T

0

ΓT
s φ(s)dw(s)

Moreover,

E
∥∥ΨT

0 v
∥∥2 ≤ ME ∥E {v|ℑT }∥2

≤ ME ∥v∥2 , v ∈ L2(Ω,ℑT ,H).

Note that if the hypotheses (H4) holds, then for some δ > 0

E
〈
ΨT

0 v, v
〉

≥ δE ∥v∥2 , for all v ∈ L2(Ω,ℑT ,H)

(see Mahumudov [20]) and consequently

E
∥∥(ΨT

0 )
−1
∥∥2 ≤ 1

δ
= n4.

Theorem 3.3. System (1)-(2) is completely controllable if the conditions (H1),
(H2), (H3) and (H4) are satisfied.

Proof. As mentioned above, to prove the complete controllability it is enough
to show that S has a fixed point in H2. To do this, we use the contraction
mapping principle. To apply the contraction mapping principle, first we show
that S maps H2 into itself. Now by Lemmas 2.1 and 2.2, we have

E ∥(Sαy)(t)∥2 = E
∥∥ψ(t) +R(t)y0 +ΨT

0

[
R∗(T − t))(ΨT

0 )
−1 ×

(
yT −R(T )y0

−
∫ T

0

R(T − s)f(s, y(s− h))ds

−
∫ T

0

R(T − s)σ(s, y(s− h))dw(s)

−
∫ T

0

∫
Z
R(T − s)g(s, y(s− h), z)Ñ(ds, dz)

)]

+

∫ t

0

R(t− s)f(s, y(s− h))ds+

∫ t

0

R(t− s)σ(s, y(s− h))dw(s)

+

∫ t

0

∫
Z
R(t− s)g(s, y(s− h), z)Ñ(ds, dz)

∥∥2
≤ 6 ∥ψ∥2 + 6n1 ∥y0∥2

+ 6EΨt
0

[
R∗(T − t)(ΨT

0 )
−1 ×

(
yT −R(T )y0

−
∫ T

0

R(T − s)f(s, y(s− h))ds
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−
∫ T

0

R(T − s)σ(s, y(s− h))dw(s)

−
∫ t

0

∫
Z
R(t− s)g(s, y(s− h), z)Ñ(ds, dz)

)]

+ 6n1t

∫ t

0

E ∥f(s, y(s− h))∥2 ds+ 6n1Lσ

∫ t

0

E ∥σ(s, y(s− h))∥2 ds

+ 6n1

∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥2 v(dz)ds

+ 6n1

(∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥4 v(dz)ds

)1/2

≤ 6 ∥ψ∥2 + 6n1 ∥y0∥2 + 30Mn1n3n4 + 30Mn2
1n4 ∥y0∥2

+ 30Mn2
1n4T

∫ T

0

E ∥f(s, y(s− h))∥2 ds

+ 30Mn2
1n4Lσ

∫ T

0

E ∥σ(s, y(s− h))∥2 ds

+ 30Mn2
1n4

∫ T

0

∫
Z
E ∥g(s, y(s− h), z)∥2 v(dz)ds

+ 30Mn2
1n4

(∫ T

0

∫
Z
E ∥g(s, y(s− h), z)∥4 v(dz)ds

)1/2

+ 6n1T

∫ t

0

E ∥f(s, y(s− h))∥2 ds+ 6n1Lσ

∫ t

0

E ∥σ(s, y(s− h))∥2 ds

+ 6n1

∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥2 v(dz)ds

+ 6n1

(∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥4 v(dz)ds

)1/2

≤ B1 +
(
30Mn2

1n4 + 6n1

) [
T

∫ t

0

E ∥f(s, y(s− h))∥2 ds

+ Lσ

∫ t

0

E ∥σ(s, y(s− h))∥2 ds

+

∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥2 v(dz)ds

+

(∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥4 v(dz)ds

)1/2
]

≤ B1 +B2

[
T

∫ t

0

E ∥f(s, y(s− h))∥2 ds

+ Lσ

∫ t

0

E ∥σ(s, y(s− h))∥2 ds

+

∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥2 v(dz)ds
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+

(∫ t

0

∫
Z
E ∥g(s, y(s− h), z)∥4 v(dz)ds

)1/2
]

where B1 > 0 and B2 > 0 are suitable constants. It follows from the above and the
condition (H2) and (H3) that there exists K1 such that

E ∥(Sαy)(t)∥2 ≤ K1

(
1 +

∫ T

0

E ∥y(r − h)∥2 dr
)

≤ K1

(
1 + T sup

−∞≤t≤T
E ∥y(t)∥2

)
for all t ∈ [−∞, T ]. Therefore, S maps H2 into itself. Second, we show that S is a
contraction mapping, indeed.

E ∥(Sαy1)(t)− Sαy2)(t)∥2

= E
∥∥Ψt

0

[
R∗(T − t))(ΨT

0 )
−1

×

(∫ T

0

R(T − s) [f(s, y1(s− h))− f(s, y2(s− h))] ds

+

∫ T

0

R(T − s) [σ(s, y1(s− h))− σ(s, y2(s− h))] dw(s)

+

∫ T

0

∫
Z
R(T − s) [g(s, y1(s− h), z)− g(s, y2(s− h), z)] Ñ(ds, dz)

)]

+

∫ t

0

R(T − s) [f(s, y1(s− h))− f(s, y2(s− h))] ds

+

∫ t

0

R(T − s) [σ(s, y1(s− h))− σ(s, y2(s− h))] dw(s)

+

∫ t

0

∫
Z
R(T − s) [g(s, y1(s− h), z)− g(s, y2(s− h), z)] Ñ(ds, dz)

∥∥2
≤ 6Mn2

1n4

[
T

∫ T

0

E ∥f(s, y1(s− h))− f(s, y2(s− h))∥2 ds

+ Lσ

∫ T

0

E ∥σ(s, y1(s− h))− σ(s, y2(s− h))∥2 ds

+

∫ T

0

∫
Z
E ∥g(s, y1(s− h), z)− g(s, y2(s− h), z)∥2 v(dz)ds

+

(∫ T

0

∫
Z
E ∥g(s, y1(s− h), z)− g(s, y2(s− h), z)∥4 v(dz)ds

)1/2
]

+ 6n1

[
T

∫ t

0

E ∥f(s, y1(s− h))− f(s, y2(s− h))∥2 ds

+ Lσ

∫ t

0

E ∥σ(s, y1(s− h))− σ(s, y2(s− h))∥2 ds
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+

∫ t

0

∫
Z
E ∥g(s, y1(s− h), z)− g(s, y2(s− h), z)∥2 v(dz)ds

+

(∫ t

0

∫
Z
E ∥g(s, y1(s− h), z)− g(s, y2(s− h), z)∥4 v(dz)ds

)1/2
]

≤ 6Mn2
1n4

[
CT + CLσ + C +

√
C0

]∫ T

0

E ∥y1(s− h)− y2(s− h)∥2 ds

+ 6n1

[
CT + CLσ + C +

√
C0

]∫ t

0

E ∥y1(s− h)− y2(s− h)∥2 ds

≤ 6n1

[
Mn1n4 + 1

][
C

(
T + Lσ + 1

)
+

√
C0

]∫ T

0

E ∥y1(s− h)− y2(s− h)∥2 ds

This proves that

sup
t∈[−h,T ]

E ∥(Sαy1)(t)− Sαy2)(t)∥2

≤ 6n1

[
Mn1n4 + 1

][
C

(
T + Lσ + 1

)
+

√
C0

]
T

× sup
t∈[−∞,T ]

E ∥y1(t)− y2(t)∥2

Therefore, for every α > 0, there exists η(α) > 0 such that

E ∥(Sαy1)(t)− Sαy2)(t)∥H ≤ tη(α) ∥y1 − y2∥2Cb

Moreover,

E ∥Sα(x1)(t)− Sα(x2)(t)∥2H ≤ η(α)

∫ t

0

E ∥Sα(x1)(s)− Sα(x2)(s)∥2

≤ η(α)

∫ t

0

sη(α)E ∥x1(s)− x2(s)∥2 ds

= η2(α)
t2

2
∥x1 − x2∥2Cb

Using mathematical induction, one can get

E ∥Sα(y1)(t)− Sα(y2)(t)∥2H ≤ η(α)

∫ t

0

E
∥∥Sn−1

α (y1)(s)− Sn−1
α (y2)(s)

∥∥2
≤ (tη(α))n

n
∥y1 − y2∥2Cb

In general,

∥Sα(y1)− Sα(y2)∥2H ≤ (Tη(α))n

n!
∥y1 − y2∥2Cb

So every α > 0, there exists n such that (Tη(α))n

n!
< 1. It follows that Sn

α is a contrac-
tion mapping for sufficiently large n. Now, by the contraction mapping principle, the
operator Sα has a unique fixed point xα in H2, which is the mild solution of (1)-(2).
Thus the system (1)-(2) is completely controllable . So, the theorem is proved. □
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4. Example

Consider a control system with a semi-linear stochastic integro-differential
equations with delay and Poisson jumps of the form:

dx(t, v) =

[
∂2

∂v2x(t, v) +

∫ t

−∞
Q̃(t− s)x(s)ds+ B̃(t, v) + f̃(t, x(t− h), v)

]
dt

+σ̃(t, x(t− h), v)dw(t)

+

∫
Z

(∫ t

−∞
g̃(t, v(t− h), z)ds

)
Ñ(dt, dz), t ∈ [0, T ],

x(t, 0) = x(t, π) = 0, t ∈ [0, T ],

x(0, v) +

∫ π

0

q1(v, y)z(t, y)dy = ψ(t, v), t ∈ (−∞, 0].

(8)

Let H = L2[0, π] and U = L2[0, T ]. Here q1(v, y) ∈ L2[0, π] and W (t), t ≥ 0 is

a real standard Brownian motion and Ñ(., .) is a compensated Poisson measure
on [1,∞) with parameter v(dz)ds such that∫ ∞

1

v(ds) <∞.

Let A : H → H be an operator defined by Av = v
′′
with domain

D(A) =
{
w ∈ X : w and w

′
are absolutely continuous, w

′′
∈ H, w(0) = w(π) = 0

}
Then

Aw =

∞∑
n=1

n2 ⟨w, en⟩ en, w ∈ D(A),

where en(v) = ( 2π )
1/1sin nv, 0 ≤ v ≤ π, n = 1, 2, ... is the orthogonal set of

eigenvectors of A. If A is the infinitesimal generator of a semi-group T (t), t > 0,
in H and given by

T (t)w =

∞∑
n=1

en
2t ⟨w, en⟩ en, w ∈ H.

Now, we present a special case Cb. Let b(s) = e2s, s < 0, then l =
∫ 0

−∞ b(s)ds =

1/2. Let ∥ψ∥Cb
=
∫ 0

∞ b(s)sups≤θ≤0(E|ψ(θ)|2)1/2ds, then (Cb, ∥.∥Cb
) is a Banach

space. For (t, ψ) ∈ [0, T ]×Cb,, where ψ(θ)(v) = ψ(θ, v), (θ, v) ∈ (−∞, 0]× [0, π],
and we define the functions f : [0, T ] × Cb → H, σ : [0, T ] × Cb → LQ(H) and
g : [0, T ]× Cb ×Z → H for infinite delay as follows:

f(t, ψ)(v) =

∫ 0

−∞
f̃(t, x, θ)ψ(θ)(v)dθ

σ(t, ψ)(v) =

∫ 0

−∞
σ̃(t, x, θ)ψ(θ)(v)dθ
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g(t, ψ)(v) =

∫ 0

−∞
g̃(t, v, θ)ψ(θ)(v)dθ

Let Bu : J → H be defined by

Bu(t)(v) = B̃(t, v), 0 ≤ v ≤ π, u ∈ J.

Assume that the operator LT
0 be defined by

(LT
0 u)(v) =

∫ T

0

e−n2(T−s)B̃(t, v)ds.

On the other hand, it is known that the linear system corresponding to (8) is ex-
actly controllable. Hence, all conditions in Theorem 3.1 are satisfied. Therefore,
the system (8) can be written in the abstract formulation (1)-(2). By Theorem
3.1, system (8) is completely controllable on [0, T ].

5. Conclusion

This paper deals with the complete controllability of semi-linear stochastic
differential equations with infinite delay and Poisson jumps under some basic
and readily verified conditions. The results are obtained by using fixed-point
approach. This motivatse the future research work such as the exact (complete)
controllability of semi-linear stochastic differential equations with infinite delay
driven by a fractional Brownian motion. One can extend the same work for
second order system/inclusion. Complete controllability of semi-linear stochas-
tic fractional order differential equations with infinite time dependent delay/
state dependent delay and Poisson jumps under some basic and readily veri-
fied conditions of Riemann Louville derivative and Caputo derivative would be
interesting. Complete controllability of semi-linear stochastic fractional order
differential equations with infinite delay and Poisson jumps using recently de-
veloped Atangana Baleanu Caputo (ABC) [18] derivative.

Acknowledgments : The authors wish to thank the anonymous reviewers
for their valuable comments and suggestions.
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