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ON SOMBOR INDEX OF BICYCLIC GRAPHS WITH GIVEN

MATCHING NUMBER†

XIAOLING SUN∗, JIANWEI DU

Abstract. Nowadays, it is an important task to find extremal values on

any molecular descriptor with respect to different graph parameters. The
Sombor index is a novel topological molecular descriptor introduced by

Gutman in 2021. The research on determining extremal values for the Som-

bor index of a graph is very popular recently. In this paper, we present the
maximum Sombor index of bicyclic graphs with given matching number.

Furthermore, we identify the corresponding extremal bicyclic graphs.
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1. Introduction

As a numerical parameter of molecular structure, topological molecular de-
scriptors (or topological indices) play an important role in chemistry, pharma-
cology and materials science, etc. (see [10], [11], [26]). In 2021, Gutman [8] put
forward a novel topological molecular descriptor named Sombor index. And for
a (molecular) graph G, it is defined as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2,

where dG(u) denotes the degree of vertex u in G. Sombor index has attracted a
significant attention from researchers within a very short time. Redžepović [23]
found that Sombor index can be successfully used to simulate the thermodynamic
properties of compounds since it possesses satisfactory prediction potential in
modeling entropy and enthalpy of vaporization of alkanes. For mathematical
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investigations of Sombor index, the readers can refer to [1-4], [6-9], [12-17], [19],
[20], [24], [25], [27], [29], [30].

We only deal with connected graphs without multiple edges and loops. We use
G = (V (G), E(G)) to denote the graph with vertex set V (G) and edge set E(G).
Let NG(x) be the set of all neighbours of x ∈ V (G) in G, and dG(x) = |NG(x)|.
If dG(x) = 1, we call x is a pendant vertex, and denoted by PV (G) the set
of all pendant vertices in G. We denote the distance between vertices u and
v of G by dG(u, v). Let G − xy and G − x be the graph obtained from G by
deleting the edge xy ∈ E(G) and the vertex x ∈ V (G), respectively. Similarly,
G + uv is the graph obtained from G by adding an edge uv /∈ E(G), where
u, v ∈ V (G). Unicyclic graphs U and bicyclic graphs B are connected graphs
satisfying |E(U)| = |V (U)| and |E(B)| = |V (B)| + 1, respectively. As usual,
let’s denote the path, the cycle and the star on n vertices by Pn, Cn and Sn,
respectively.
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Figure 1. The graphs ∞(p, l, q), θ(a, b, c) and ∞(p, 0, q).

There are two categories of bases of bicyclic graphs, as described here. De-
noted by ∞(p, l, q) the graph obtained from two vertex-disjoint cycles Cp and
Cq by connecting one vertex u∗ of Cp and one vertex v∗ of Cq with a path
Pl+1 = u∗ · · · v∗ of length l (if l = 0, identifying u∗ with v∗), as depicted in
Figure 1. Denoted by θ(a, b, c) the union of three internally disjoint paths Pa+1,
Pb+1, Pc+1 of length a, b, c (a, b, c ≥ 1 and at most one of them is 1) respectively
with common end vertices u∗ and v∗, as depicted in Figure 1. Notice that any
bicyclic graph is obtained from a θ(a, b, c) or an ∞(p, l, q) by attaching trees to
some of its vertices. The bicyclic graphs containing ∞(p, l, q) and θ(r, s, t) as its
base are called ∞-graph and θ-graph, respectively.

A subset M ⊆ E(G) is called a matching of G if no pair of edges in M
share a common vertex. The matching number of a graph G is the maximum
cardinality of a matching in G. If vertex x ∈ V (G) is incident with some edge of
M , where M is a matching of G, then x is said to be M -saturated. M is called
a perfect matching if each vertex of G is M -saturated. We can refer to [5] for
other terminologies and notations.

At present, studying the behavior of topological indices is an essential subject.
There are many papers on topological indices of bicyclic graphs. Recent results
can be referred to [3], [18], [21], [28], et al. In this paper, by using the proper-
ties of Sombor index and exploring the structures of bicyclic graphs with given
matching number, we present the maximum Sombor index of bicyclic graphs
with given matching number, and identify the corresponding extremal graphs.
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2. Some lemmas

Let S(x, y) =
√
x2 + y2, where x, y ≥ 1. One can easily get the Lemmas 2.1

and 2.2. They also can be found in [25].

Lemma 2.1. Let hc(x) = S(x, c + 1) − S(x, c) =
√
x2 + (c+ 1)2 −

√
x2 + c2,

where x ≥ 1 and c is a positive integer. Then hc(x) is decreasing for x.

Lemma 2.2. Let ϕc(x) = S(x, c) − S(x − 1, c) =
√
x2 + c2 −

√
(x− 1)2 + c2,

where x ≥ 2 and c is a positive integer. Then ϕc(x) is increasing for x.

Lemma 2.3. Let ψ(m) = (m+1)
√

(m+ 2)2 + 4+
√

5(m−3)+
√

(m+ 2)2 + 1+

4
√

2− (4
√

2m+ 8
√

5− 6
√

2). Then ψ(m) > 0 for m ≥ 3.

Proof. Notice that for m ≥ 3,

ψ′(m) >
√

(m+ 2)2 + 4 +
√

5− 4
√

2 ≥
√

29 +
√

5− 4
√

2 ≈ 1.964 > 0.

So ψ(m) ≥ ψ(3) = 4
√

29 +
√

26− 2
√

2− 8
√

5 ≈ 5.923 > 0. �

Lemma 2.4. Let l(t, r) =
√
t2 + 1 + (r − 1)

(√
t2 + 1 −

√
(t− 1)2 + 1

)
+ (t −

r)
(√
t2 + 4 −

√
(t− 1)2 + 4

)
, where r ≥ 2, t ≥ 3 and r < t. Then l(t, r) is

increasing for t and r, respectively.

Proof. Note that l(t, r) = r
[(√

(t−1)2+4−
√

(t−1)2+1
)
−
(√
t2 + 4−

√
t2 + 1

)]
+

t
(√
t2 + 4−

√
(t− 1)2 + 4

)
+
√

(t− 1)2 + 1. By Lemma 2.1, we have
(√

(t− 1)2 + 4

−
√

(t− 1)2 + 1
)
−
(√
t2 + 4 −

√
t2 + 1

)
= h1(t − 1) − h1(t) > 0. So l(t, r) is

increasing for r. Furthermore,

∂l(t, r)

∂t
=r
[( t−1√

(t−1)2 + 4
− t−1√

(t−1)2+1

)
−
( t√

t2+4
− t√

t2+1

)]
+
(√

t2+4−
√

(t−1)2 + 4
)

+t
( t√

t2+4
− t−1√

(t−1)2+4

)
+

t−1√
(t−1)2+1

.

Let g1(x) = x√
x2+4

− x√
x2+1

. Then for x ≥ 2, g′1(x) = 4√
(x2+4)3

− 1√
(x2+1)3

=
√

2(2x2+2)3−
√

(x2+4)3√
(x2+4)3(x2+1)3

> 0. Then
(

t−1√
(t−1)2+4

− t−1√
(t−1)2+1

)
−
(

t√
t2+4
− t√

t2+1

)
= g1(t−

1)− g1(t) < 0. Since r < t, we have

∂l(t, r)

∂t
>t
[( t−1√

(t−1)2 + 4
− t−1√

(t−1)2+1

)
−
( t√

t2+4
− t√

t2+1

)]
+
(√

t2+4−
√

(t−1)2+4
)

+t
( t√

t2+4
− t−1√

(t−1)2+4

)
+

t−1√
(t−1)2+1

=
√
t2+4−

√
(t−1)2+4 +

t2√
t2+1

− (t− 1)2√
(t− 1)2+1

.
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Let g2(x) = x2
√
x2+1

. Then for x ≥ 2, g′2(x) = x3+2x√
(x2+1)3

> 0. So t2√
t2+1
−

(t−1)2√
(t−1)2+1

= g2(t)− g2(t− 1) > 0. Therefore, ∂l(t,r)
∂t > 0, and l(t, r) is increasing

for t. �

Lemma 2.5. ([3])Let B be an n-vertex (n ≥ 4) bicyclic graph. Then

SO(B) ≥ 2
√

2n− 5
√

2 + 4
√

13.

Equality holds only if B ∈ θ(a, b, c) (one of a, b, c is equal to 1 and a+b+c−1 = n)
or B ∈ ∞(p, 1, q) (p+ q = n).

Lemma 2.6. ([29]) Let U be an 2m-vertex (m ≥ 2) unicyclic graph with a
perfect matching. Then

SO(U) ≤m
√

(m+ 1)2 + 4 +
√

5(m− 2) +
√

(m+ 1)2 + 1 +
√

8.

3. Main results

For integers m ≥ 3, denoted by BBBn,m the set of n-vertex bicyclic graphs with
matching number m.
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Figure 2. The graph BBB∗n,m.

Let BBB∗n,m be the bicyclic graphs on n vertices arisen from ∞(3, 0, 3) by at-
taching n− 2m+ 1 pendant edges and m− 3 paths of length 2 to the vertex of
degree 4 in ∞(3, 0, 3), as depicted in Figure 2. Let SO(BBB∗n,m) = f(n,m), where

f(n,m) =(m+ 1)
√

(n−m+ 2)2 + 4 +
√

5(m− 3)

+ (n− 2m+ 1)
√

(n−m+ 2)2 + 1 + 4
√

2.

Lemma 3.1. ([31]) Let B ∈BBB2m,m and T be a tree in B attached to a root r,
where m ≥ 3. If y ∈ V (T ) is a vertex furthest from the root r with dB(y, r) ≥ 2,
then y is a pendant vertex and adjacent to a vertex x of degree 2.

Lemma 3.2. ([22]) Let B ∈ BBB2m,m. If PV (B) 6= ∅, then for any vertex x ∈
V (B), | NB(x) ∩ PV (B) |≤ 1.

Lemma 3.3. ([31]) Let B ∈ BBBn,m (n > 2m) and B has at least one pendant
vertex. Then there is an m-matching M and a pendant vertex y such that M
does not saturate y.
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Figure 3. The graphs B1, B2, · · · , B6 and B7.

By Lemma 2.5, Theorem 3.4 is immediate.

Theorem 3.4. Let B ∈BBB2m,m, where m ≥ 3. Then

SO(B) ≥ 4
√

2m− 5
√

2 + 4
√

13.

Equality holds only if B ∈ θ(a, b, c) (one of a, b, c is equal to 1 and a+b+c−1 =
2m) or B ∈ ∞(p, 1, q) (p+ q = 2m).

Theorem 3.5. Let B ∈BBB2m,m, where m ≥ 3. Then

SO(B) ≤f(2m,m),

where f(2m,m) = (m+ 1)
√

(m+ 2)2 + 4 +
√

5(m− 3) +
√

(m+ 2)2 + 1 + 4
√

2,
with equality if and only if B ∼= BBB∗2m,m.

Proof. If PV (B) = ∅, B belongs to the type of ∞(p, l, q) or θ(a, b, c) (see Figure
1), where p+ l + q = 2m+ 1 or a+ b+ c = 2m+ 1. By Lemma 2.3, for m ≥ 3,

we have SO(∞(p, 0, q)) = 4
√

2m + 8
√

5 − 6
√

2 < f(2m,m). And for m ≥ 3,

SO(∞(p, l, q)) = SO(θ(a, b, c)) = 4
√

2m + 6
√

13 − 10
√

2 < 4
√

2m + 8
√

5 −
6
√

2 = SO(∞(p, 0, q)) < f(2m,m) (l > 1) when u∗v∗ /∈ B, SO(∞(p, l, q)) =

SO(θ(a, b, c)) = 4
√

2m+ 4
√

13− 5
√

2 < 4
√

2m+ 8
√

5− 6
√

2 < f(2m,m) (l = 1)
when u∗v∗ ∈ B. So we suppose that PV (B) 6= ∅ in the following proof.

By induction on m. If m = 3, then B ∈ {B1, B2, · · · , B7}, where B1, B2, · · · ,
B7 are depicted in Figure 3. By direct calculation, SO(Bi) < SO(B1) =
SO(BBB∗6,3) = f(6, 3), where i = 2, · · · , 7. Thus for m = 3, the theorem is true.

We assume that m ≥ 4 and the result holds for all bicyclic graphs on fewer
than 2m vertices with a perfect matching. Suppose M is a perfect matching of
B. For y ∈ PV (B), there exists a tree Tr attached on a root r ∈ V (θ(a, b, c)) or
r ∈ V (∞(p, l, q) in B such that y ∈ V (Tr), where Tr is a pendant tree in B. Let
dTr

(r, z) = max{dTr
(r, y)|y ∈ V (Tr)} and TTT B be the set of all pendant trees in

B. We discuss in three cases.
Case 1. max{dTr

(r, z)|Tr ∈ TTT B} = 1.
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Now, B is a graph arisen from∞(p, l, q) or θ(a, b, c) by attaching some pendant
edges to its some vertices. In view of Lemma 3.2, it follows that every vertex of
∞(p, l, q) or θ(a, b, c) is attached by at most one pendant edge.

B1
m B2

m B3
m B4

m

B5
m B6

m B7
m

Figure 4. The graphs B1
m, B

2
m, · · ·B6

m and B7
m.

Subcase 1.1. For any w ∈ V (B), dB(w) 6= 2.
Since B has a perfect matching, then B ∈ {Bi

m|i = 1, 2, · · · , 7}, where Bi
m

(i = 1, 2, · · · , 7) are depicted in Figure 4. It is not difficult to get that SO(B1
m) =

(3
√

2 +
√

10)m+ 6
√

2−
√

10 (m ≥ 3), SO(B2
m) = (3

√
2 +
√

10)m+ 20 + 2
√

17−
2
√

10−8
√

2 (m ≥ 4), SO(B3
m) = (3

√
2+
√

10)m+6
√

2−
√

10 (m ≥ 5), SO(B4
m) =

(3
√

2+
√

10)m+20+2
√

17−2
√

10−8
√

2 (m ≥ 6), SO(B5
m) = (3

√
2+
√

10)m+

4
√

34 +
√

26 −
√

10 − 9
√

2 (m ≥ 5), SO(B6
m) = (3

√
2 +
√

10)m + 30 + 2
√

17 −
2
√

10−15
√

2 (m ≥ 5) and SO(B7
m) = (3

√
2+
√

10)m+30+2
√

17−2
√

10−15
√

2
(m ≥ 7). By a similar way as the case of PV (B) = ∅, one can easily check that
SO(BBB∗2m,m) = f(2m,m) > SO(B5

m) > SO(Bi
m), where i = 1, 2, 3, 4, 6, 7.

Subcase 1.2. B contains one vertex w with dB(w) = 2.
Subsubcase 1.2.1. w belongs to the vertices in one of the cycles of B.
Denote NB(w) = {w1, w2}. Since B ∈BBB2m,m, then ww1 /∈ M or ww2 /∈ M .

Suppose without loss of generality that ww1 /∈ M . Let dB(w1) = t, NB(w1) \
{w} = {u1, u2, · · · , ut−1}. Since B ∈ BBB2m,m, then 2 ≤ t ≤ 5, 2 ≤ dB(w2) ≤ 5
and dB(ui) ≥ 1, where i = 1, 2, · · · , t − 1. In view of Lemma 3.2, there exists
at most one vertex of {u1, u2, · · · , ut−1} with degree 1. Let U ′ = B − ww1.
Obviously, U ′ is an 2m-vertex (m ≥ 4) unicyclic graph with a perfect matching.
By Lemmas 2.1, 2.2 and 2.6, for 2 ≤ t ≤ 5 and m ≥ 4, it follows that

SO(B) =SO(U ′) + S(2, dB(w2))− S(1, dB(w2)) + S(2, t)

+

t−1∑
i=1

[
S(t, dB(ui))− S(t− 1, dB(ui))

]
≤SO(U ′) + S(2, 2)− S(1, 2) + S(2, t) + S(t, 1)− S(t− 1, 1)
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+ (t− 2)[S(2, t)− S(2, t− 1)]

≤SO(U ′) +
√

8−
√

5 +
√
t2 + 1−

√
(t− 1)2 + 1 +

√
t2 + 4

+ (t− 2)
(√

t2 + 4−
√

(t− 1)2 + 4
)

≤m
√

(m+ 1)2 + 4 +
√

5(m− 2) +
√

(m+ 1)2 + 1

+
√

8 +
√

8−
√

5 +
√

26−
√

17 + 4
√

29− 3
√

20

<f(2m,m)

since

f(2m,m)−m
√

(m+ 1)2 + 4−
√

5(m− 2)−
√

(m+ 1)2 + 1− 2
√

8 +
√

5

−
√

26 +
√

17− 4
√

29 + 3
√

20

=m
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 1−
√

(m+ 1)2 + 1

+
√

(m+ 2)2 + 4−
√

26 +
√

17− 4
√

29 + 3
√

20

≥4(
√

40−
√

29) +
√

37−
√

26 +
√

40−
√

26 +
√

17− 4
√

29 + 3
√

20

≈1.9657 > 0.

Subsubcase 1.2.2. w lie in the path of a ∞-graph.
Now B contains an edge uv which belongs to a cycle such that dB(u) =

dB(v) = 3. Denote NB(u) = {v, u1, u2} and NB(v) = {u, v1, v2}. Assume
without loss of generality that dB(u1) = dB(v1) = 1 and 3 ≤ dB(u2), dB(v2) ≤ 4.
Let U ′′ = B − uv. Then U ′′ is an 2m-vertex (m ≥ 4) unicyclic graph with a
perfect matching. By Lemmas 2.1 and 2.6, it follows that

SO(B) =SO(U ′′) + S(3, 3) + 2
(
S(3, 1)− S(2, 1)

)
+ S(3, dB(u2))− S(2, dB(u2))

+ S(3, dB(v2))− S(2, dB(v2))

≤SO(U ′′) + S(3, 3) + 2
(
S(3, 1)− S(2, 1)

)
+ 2
(
S(3, 3)− S(2, 3)

)
≤m

√
(m+ 1)2 + 4 +

√
5(m− 2) +

√
(m+ 1)2 + 1 +

√
8 +
√

18

+ 2(
√

10−
√

5) + 2(
√

18−
√

13)

<f(2m,m).

since

f(2m,m)−m
√

(m+ 1)2 + 4−
√

5(m− 2)−
√

(m+ 1)2 + 1−
√

8−
√

18

− 2(
√

10−
√

5)− 2(
√

18−
√

13)

=m
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 1−
√

(m+ 1)2 + 1

+
√

(m+ 2)2 + 4 + 2
√

2−
√

5−
√

18− 2(
√

10−
√

5)− 2(
√

18−
√

13)

≥4(
√

40−
√

29) +
√

37−
√

26 +
√

40 + 2
√

2−
√

5−
√

18

− 2(
√

10−
√

5)− 2(
√

18−
√

13)
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≈4.289 > 0.

Case 2. There is a pendant tree Tr ∈ TTT B such that dTr (r, z) = 2.
Since z ∈ PV (B), let NB(z) = {u}, by Lemma 3.1, we have dB(u) = 2. Let

NB(u) = {r, z}, NB(r) = {u, x1, x2, · · · , xs, v1, v2, · · · , vt}, where xi belongs to
the vertices of the cycles in B and dB(xi) ≥ 2 (i = 1, 2, · · · , s and s = 2, 3 or 4).

Subcase 2.1. PV (B) ∩NB(r) 6= ∅.
Suppose without loss of generality that v1 ∈ PV (B), then v1r ∈ M . By

Lemma 3.2, (NB(r) \ {v1}) ∩ PV (B) = ∅. Then dB(vj) ≥ 2 for 2 ≤ j ≤ t.
Since dTr (r, z) = max{dTr (r, y)|y ∈ V (Tr)} = 2, combining with Lemma 3.1, we
have dB(vj) = 2 and (NB(vj) \ {r}) = {zj} ∈ PV (B), where 2 ≤ j ≤ t. Let
B′ = B − z − u, then B′ ∈ BBB2m−2,m−1. By Lemmas 2.1, 2.2 and induction
hypothesis, it follows that

SO(B) =SO(B′) + S(t+ s+ 1, 1)− S(t+ s, 1) + S(t+ s+ 1, 2) + S(1, 2)

+

s∑
i=1

[
S(t+s+1, dB(xi))−S(t+ s, dB(xi))

]
+

t∑
j=2

[
S(t+ s+ 1, 2)−S(t+ s, 2)

]
≤SO(B′) + S(t+ s+ 1, 1)− S(t+ s, 1) + S(t+ s+ 1, 2) + S(1, 2)

+ (t+ s− 1)[S(t+ s+ 1, 2)− S(t+ s, 2)]

≤f(2m− 2,m− 1) + (t+ 3)[S(t+ 5, 2)− S(t+ 4, 2)]

+ S(t+ 5, 1)− S(t+ 4, 1) + S(t+ 5, 2) + S(1, 2)

=f(2m−2,m−1)+m
(√

(m+2)2+4−
√

(m+1)2+4
)

+
√

(m+ 2)2 + 1−
√

(m+ 1)2 + 1 +
√

(m+ 2)2 + 4 +
√

5

=f(2m,m)

since t ≤ m − 3 and S(t + s + 1, k) − S(t + s, k) (k = 1, 2), S(t + s + 1, 2) is
increasing for s. With the equalities only if V (B) = {x1, · · · , x4, r, v1, u, z} ∪
{v2, · · · , vt, z2, · · · , zt}, s = 4, dB(x1) = · · · = dB(x4) = 2 and SO(B′) =
f(2m− 2,m− 1), which implies that B′ ∼= BBB∗2m−2,m−1 and B ∼= BBB∗2m,m.

Subcase 2.2. PV (B) ∩NB(r) = ∅.
Now we can see that dB(vj) ≥ 2, (NB(vj) \ {r}) = {zj} ∈ PV (B), where

1 ≤ j ≤ t and vjzj ∈ M . Since B ∈ BBB2m,m, then B contains one vertex
xj ∈ NB(r) and xj also belongs to the vertices of the cycles in B such that
rxj ∈M . Let B′ = B − z − u, then B′ ∈BBB2m−2,m−1. By Lemmas 2.1, 2.2 and
induction hypothesis, it follows that

SO(B) =SO(B′) + S(t+ s+ 1, 2) + S(1, 2)

+

s∑
i=1

[
S(t+ s+ 1, dB(xi))− S(t+ s, dB(xi))

]
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+

t∑
j=1

[
S(t+ s+ 1, 2)− S(t+ s, 2)

]
≤SO(B′) + S(t+ s+ 1, 2) + S(1, 2)

+ (t+ s)[S(t+ s+ 1, 2)− S(t+ s, 2)]

≤f(2m− 2,m− 1) + S(t+ 5, 2) + S(1, 2)

+ (t+ 4)[S(t+ 5, 2)− S(t+ 4, 2)]

=f(2m− 2,m− 1) +
√

(t+ 5)2 + 4 +
√

5

+ (t+ 4)
(√

(t+ 5)2 + 4−
√

(t+ 4)2 + 4
)

<f(2m− 2,m− 1) +
√

(m+ 2)2 + 4 +
√

5

+ (m+ 1)
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

=f(2m,m)+
(√

(m+ 2)2+4−
√

(m+ 2)2+1
)

−
(√

(m+ 1)2 + 4−
√

(m+ 1)2 + 1
)

=f(2m,m) +
(
h1(m+ 2)− h1(m+ 1)

)
<f(2m,m)

since t < m− 3.
Case 3. For all Tr ∈ TTT B , dTr

(r, z) 6= 2 and max{dTr
(r, z)|Tr ∈ TTT B} ≥ 3.

Similar to Case 2, as z ∈ PV (B), denote NB(z) = {u}, by Lemma 3.1,
dB(u) = 2. Denote NB(u) = {v, z} and NB(v) = {u,w, v1, v2, · · · , vt} (maybe
w = r), then dB(w) ≥ 2.

Subcase 3.1. NB(v) ∩ PV (B) 6= ∅.
Assume without loss of generality that v1 ∈ PV (U), then v1v ∈ M . Similar

to Subcase 2.1, we have dB(vi) = 2 and NB(vi) \ {v} = {zi} ∈ PV (B), where
i = 2, 3, · · · , t. Let B′ = B − z − u. Then B′ ∈ BBB2m−2,m−1. By Lemmas 2.1,
2.2 and induction hypothesis, it follows that

SO(B) =SO(B′)+S(t+ 2, dB(w))− S(t+ 1, dB(w))+[S(t+ 2, 1)− S(t+ 1, 1)]

+ S(t+ 2, 2) + S(2, 1) +
t∑

i=2

[
S(t+ 2, dB(vi))− S(t+ 1, dB(vi))

]
≤SO(B′) + t[S(t+ 2, 2)− S(t+ 1, 2)] + [S(t+ 2, 1)− S(t+ 1, 1)]

+ S(t+ 2, 2) + S(2, 1)

≤f(2m− 2,m− 1) +
√

(t+ 2)2 + 4 +
√

5

+ t
(√

(t+ 2)2 + 4−
√

(t+ 1)2 + 4
)

+
√

(t+ 2)2 + 1−
√

(t+ 1)2 + 1

<f(2m− 2,m− 1) +
√

(m− 1)2 + 4 +
√

5

+
√

(m− 1)2 + 1−
√

(m− 2)2 + 1
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+ (m− 3)
(√

(m− 1)2 + 4−
√

(m− 2)2 + 4
)

<f(2m,m)

since t < m− 3 and

f(2m,m)−f(2m− 2,m− 1)−
√

(m− 1)2 + 4−
√

5−
√

(m− 1)2 + 1

+
√

(m− 2)2 + 1− (m− 3)
(√

(m− 1)2 + 4−
√

(m− 2)2 + 4
)

=(m−3)
[(√

(m+2)2 + 4−
√

(m+1)2+4
)
−
(√

(m−1)2+4−
√

(m− 2)2+4
)]

+
[(√

(m+ 2)2+1−
√

(m+ 1)2+1
)
−
(√

(m−1)2+1−
√

(m− 2)2+1
)]

+ 3
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 4−
√

(m− 1)2 + 4

=(m− 3)
(
ϕ2(m+ 2)− ϕ2(m− 1)

)
+
(
ϕ1(m+ 2)− ϕ1(m− 1)

)
+ 3
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 4−
√

(m− 1)2 + 4

>0.

Subcase 3.2. NB(v) ∩ PV (B) = ∅.
Similar to Subcase 2.2, we have dB(vi) = 2, NB(vi) \ {v} = {zi} ∈ PV (B),

where vizi ∈ M , i = 1, 2, · · · , t. Since B ∈ BBB2m,m, then vw ∈ M . Let B′ =
B − z − u. Then B′ ∈BBB2(m−1),m−1. By induction hypothesis and Lemmas 2.1,
2.2, we have

SO(B) =SO(B′) + S(t+ 2, 2) + S(2, 1) + S(t+ 2, dB(w)) + S(t+ 1, dB(w))

+

t∑
i=1

[
S(t+ 2, dB(vi))− S(t+ 1, dB(vi))

]
≤SO(B′) + S(t+ 2, 2) + S(2, 1) + (t+ 1)[S(t+ 2, 2)− S(t+ 1, 2)]

≤f(2m− 2,m− 1) +
√

(t+ 2)2 + 4 +
√

5

+ (t+ 1)
(√

(t+ 2)2 + 4−
√

(t+ 1)2 + 4
)

<f(2m− 2,m− 1) +
√

(m− 1)2 + 4 +
√

5

+ (m− 2)
(√

(m− 1)2 + 4−
√

(m− 2)2 + 4
)

<f(2m,m)

since t < m− 3 and

f(2m,m)− f(2m− 2,m− 1)−
√

(m− 1)2 + 4−
√

5

− (m− 2)
(√

(m− 1)2 + 4−
√

(m− 2)2 + 4
)

=(m− 2)
[(√

(m+2)2+4−
√

(m+1)2+4
)
−
(√

(m−1)2+4−
√

(m−2)2+4
)]

+ 2
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 1−
√

(m+ 1)2 + 1

+
√

(m+ 2)2 + 4−
√

(m− 1)2 + 4
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=(m− 2)
(
ϕ2(m+ 2)− ϕ2(m− 1)

)
+ 2
(√

(m+ 2)2 + 4−
√

(m+ 1)2 + 4
)

+
√

(m+ 2)2 + 1−
√

(m+ 1)2 + 1 +
√

(m+ 2)2 + 4−
√

(m− 1)2 + 4

>0.

The proof is completed. �

Theorem 3.6. Let B ∈BBBn,m, where m ≥ 3. Then

SO(B) ≤ f(n,m)

with equality if and only if B ∼= BBB∗n,m.

Proof. By induction on n. If n = 2m, by Theorem 3.5, the result holds. Now
suppose that n > 2m. If PV (B) = ∅, B belongs to the type of ∞(p, l, q) or
θ(a, b, c) and n = 2m+ 1, then p+ l + q − 1 = n = 2m+ 1 and a+ b+ c− 1 =
n = 2m + 1. For p + l + q − 1, a + b + c − 1 = 2m + 1, one can easily check
that max{SO(∞(p, l, q))(l 6= 0), SO(θ(a, b, c)), SO(∞(p, 0, q))}= SO(∞(p, 0, q))

and SO(∞(p, 0, q)) = 4
√

2m + 8
√

5 − 4
√

2 < SO(BBB∗2m+1,m) = f(2m + 1,m) =

(m + 1)
√

(m+ 3)2 + 4 +
√

5(m − 3) + 2
√

(m+ 3)2 + 1 + 4
√

2 for m ≥ 3. The
theorem holds. Thus we suppose that PV (B) 6= ∅ in the following proof. In view
of Lemma 3.3, it follows that there is a pendant vertex y and an m-matching M
such that y is not M -saturated. Let xy ∈ E(B) and dB(x) = t. Let NB(x) ∩
PV (B) = {y1, y2, · · · , yr−1, yr = y} and NB(x) \ PV (B) = {u1, u2, · · · , ut−r}.
Then dB(ui) ≥ 2 for each i ∈ {1, 2, · · · , t − r}. Furthermore, since B is a
bicyclic graph and there exist at least m − 3 M -saturated vertices in V (B) \
{x, y1, y2, · · · , yr−1, yr, u1, u2, · · · , ut−r}, then n = |V (B)| ≥ t+ 1 +m− 3, that
is t ≤ n−m+ 2. Let B′ = B − y. Then B′ ∈BBBn−1,m. We discuss in two cases.

Case 1. r = 1.
Now, y = y1. By the induction hypothesis and Lemmas 2.1, 2.2, for n > 2m,

it follows that

SO(B) =SO(B′) + S(1, t) +

t−1∑
i=1

[
S(dU (x), dU (ui))− S(dU (x)− 1, dU (ui))

]
≤SO(B′) + S(1, t) +

t−1∑
i=1

[
S(t, 2)− S(t− 1, 2)

]
≤f(n− 1,m) +

√
t2 + 1 + (t− 1)

(√
t2 + 4−

√
(t− 1)2 + 4

)
≤f(n− 1,m) +

√
(n−m+ 2)2 + 1

+(n−m+1)
(√

(n−m+2)2+4−
√

(n−m+1)2+4
)

<f(n,m)

since

f(n,m)− f(n− 1,m)−
√

(n−m+ 2)2 + 1

−(n−m+1)
(√

(n−m+2)2+4−
√

(n−m+1)2+4
)
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=(n−2m)
[(√

(n−m+ 1)2+4−
√

(n−m+ 1)2+1
)

−
(√

(n−m+ 2)2 + 4−
√

(n−m+ 2)2 + 1
)]

=(n− 2m)(h1(n−m+ 1)− h1(n−m+ 2))

>0.

Case 2. r ≥ 2.
Notice that there exist at least r−1 vertices which are not M -saturated, then

n − (r − 1) ≥ 2m, that is r ≤ n − 2m + 1. By the induction hypothesis and
Lemmas 2.1, 2.2, 2.4, it follows that

SO(B) =SO(B′) + S(1, t) +

r−1∑
i=1

[
S(dU (x), dU (yi))− S(dU (x)− 1, dU (yi))

]
+

t−r∑
j=1

[
S(dU (x), dU (uj))− S(dU (x)− 1, dU (uj))

]
≤SO(B′) + S(1, t) + (r − 1)[S(t, 1)− S(t− 1, 1)]

+ (t− r)[S(t, 2)− S(t− 1, 2)]

≤f(n− 1,m) +
√
t2 + 1 + (r − 1)

(√
t2 + 1−

√
(t− 1)2 + 1

)
+ (t− r)

(√
t2 + 4−

√
(t− 1)2 + 4

)
≤(m+1)

√
(n−m+1)2+4+(n−2m)

√
(n−m+1)2+1+

√
5(m−3)+4

√
2

+
√

(n−m+ 2)2 + 1 +(n−2m)
(√

(n−m+2)2+1−
√

(n−m+1)2+1
)

+(m+1)
(√

(n−m+2)2 + 4−
√

(n−m+1)2+4
)

=(m+ 1)
√

(n−m+ 2)2 + 4 +
√

5(m− 3) + 4
√

2

+ (n− 2m+ 1)
√

(n−m+ 2)2 + 1

=f(n,m).

With the equalities hold only if SO(B′) = f(n − 1,m), r = n − 2m + 1, t =
n−m+2 and dU (uj) = 2 for j = 1, 2, · · · , t−r, which implies that B′ ∼= BBB∗n−1,m,
and B ∼= BBB∗n,m. �
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