DOI QR코드

DOI QR Code

Prediction of earthquake-induced crest settlement of embankment dams using gene expression programming

  • Evren, Seyrek (Civil Engineering Department, Engineering Faculty,Kutahya Dumlupinar University, Evliya Celebi Campus) ;
  • Sadettin, Topcu (Department of Construction Technology, Vocational School of Technical Science, Kutahya Dumlupinar University, Campus of Germiyan)
  • 투고 : 2022.05.05
  • 심사 : 2022.12.15
  • 발행 : 2022.12.25

초록

The seismic design of embankment dams requires more comprehensive studies to understand the behaviour of dams. Deformations primarily control this behaviour occur during or after earthquake loading. Dam failures and incidents show that the impacts of deformations should be reviewed for existing and new embankment dams. Overtopping erosion failure can occur if crest deformations exceed the freeboard at the time of the deformations. Therefore, crest settlement is one of the most critical deformations. This study developed empirical formulas using Gene Expression Programming (GEP) based on 88 cases. In the analyses, dam height (Hd), alluvium thickness (Ha), the magnitude-acceleration-factor (MAF) values developed based on earthquake magnitude (Mw) and peak ground acceleration (PGA) within this study have been chosen as variables. Results show that GEP models developed in the paper are remarkably robust and accessible tools to predict earthquake-induced crest settlement of embankment dams and perform superior to the existing formulation. Also, dam engineering professionals can use them practically because the variables of prediction equations are easily accessible after the earthquake.

키워드

참고문헌

  1. Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J. and Knutsson, S. (2020), "Dam safety and earthquakes", J. Earth Sci. Geotech. Eng., 10(6), 79-132.
  2. Alkroosh, I. and Nikraz, H. (2012), "Predicting the axial capacity of driven piles in cohesive soils using intelligent computing", Eng. Appl. Artif. Intell., 25(3), 618-627. https://doi.org/10.1016/j.engappai.2011.08.009.
  3. Barkhordari, B.K. and Entezari, Z.H. (2015), "Prediction of permanent earthquake induced deformation in earth dams and embankments using artificial neural networks", Civil Eng. Infrastruct. J., 48(2), 271 -283.
  4. Bray, J.D. and Travasarou, T. (2007), "Simplified procedure for estimating earthquake-induced deviatoric slope displacements", J. Geotech. Geoenviron. Eng. - ASCE, 133(4), 381-392. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(381).
  5. Chern, J.C. and Tsai, M.S. (2001), "Seismic safety analysis of earth dam - case history studies", Proceedings of the 4th International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, USA, March.
  6. Fell, R., MacGregor, P., Stapledon, D. and Bell, G. (2005), Geotechnical Engineering of Dams, CRC Press, London.
  7. FEMA (2005), "Federal guidelines for dam safety:earthquake analyses and design of dams", FEMA-65, Federal Emergency Management Agency.
  8. Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129.
  9. Foster, M., Fell, R. and Spannagle, M. (2000), "The statistics of embankment dam failures and accidents", Can. Geotech. J., 37, 1000-1024. https://doi.org/10.1139/t00-030.
  10. Goldberg, D.E. (1989), Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Longman Publishing, Boston, MA, USA.
  11. Hu, H. and Huang, Y. (2019), "A dynamic reliability approach to seismic vulnerability analysis of earth dams", Geomech. Eng., 18(6), 661-668. https://doi.org/10.12989/gae.2019.18.6.661.
  12. ICOLD (2011), Constitution, International Commission on Large Dams, Paris, France.
  13. ICOLD (2022), https://www.icold-cigb.org/
  14. Jalal, F.E., Xu, Y., Iqbal, M., Javed, M.F. and Jamhiri, B. (2021), "Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP", J. Environ. Management, 289, 1-17. https://doi.org/10.1016/j.jenvman.2021.112420.
  15. Javdanian, H., Sanayei, H.R. and Shakarami, L. (2020), "A regression-based approach to the prediction of crest settlement of embankment dams under earthquake shaking", Scientia Iranica, 27, 671-681. https://doi.org/10.24200/sci.2018.50483.1716.
  16. Johari, A. and Nejad, A.H. (2015), "Prediction of soil-water characteristic curve using gene expression programming", Iranian J. Sci. Technol. - T. Civil Eng., 39(1), 143-165.
  17. Johari, A., Habibagahi, G., Nakhaee, M. and Habibagahi, G. (2013), "Prediction of unsaturated soils effective stress parameter using gene expression programming", Scientia Iranica, 20(5), 1433-1444.
  18. Johari, A., Javadi, A. and Najafi, H. (2016), "A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil", Scientia Iranica, 23(1), 54-65. https://doi.org/10.24200/sci.2016.2097.
  19. Kan, M.E., Taiebat, H.A. and Taiebat, M. (2017), "A framework to assess Newmark-type simplified methods for evaluation of earthquake-induced deformation of embankments", Can. Geotech. J., 54(3), 392-404. https://doi.org/10.1139/cgj-2016-0069.
  20. Karabulut, M. and Genis, M. (2019), "Pseudo seismic and static stability analysis of the Torul Dam", Geomech. Eng., 17(2), 207-214. https://doi.org/10.12989/gae.2019.17.2.207.
  21. Karalar, M. and Cavusli, M. (2019), "Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights", Earthq. Struct., 16(2), 221-234. http://doi.org/10.12989/eas.2019.16.2.221.
  22. Karalar, M. and Cavusli, M. (2021), "Three dimensional seismic deformation-shear strain-swelling performance of AmericaCalifornia Oroville Earth-Fill Dam", Geomech. Eng., 24(5), 443-456. https://doi.org/10.12989/gae.2021.24.5.443.
  23. Kayadelen, C. (2011), "Soil liquefaction modeling by genetic expression programming and neuro-fuzzy", Exp. Syst. Appl., 38(4), 4080-4087. https://doi.org/10.1016/j.eswa.2010.09.071.
  24. Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. and Ozvan, A. (2009), "Modeling of the angle of shearing resistance of soils using soft computing systems", Exp. Syst. Appl., 36(9), 11814-11826. https://doi.org/10.1016/j.eswa.2009.04.008.
  25. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, The MIT Press, Cambridge, MA.
  26. Makdisi, F.I and Seed H.B. (1978), "Simplified procedure for estimating aam and ambankment earthquake-induced deformations", J. Geoteh. Eng. Division, 104(7), 849-867. https://doi.org/10.1061/AJGEB6.0000668.
  27. Mohammadzadeh, S.D., Kazemi, S.F., Mosavi, A., Nasseralshariati, E. and Tah, J.H. (2019), "Prediction of compression index of fine-grained soils using a gene expression programming model", Infrastructures, 4(2), 1-12. https://doi.org/10.3390/infrastructures4020026.
  28. Mollahasani, A., Alavi, A.H. and Gandomi, A.H. (2011), "Empirical modeling of plate load test moduli of soil via gene expression programming", Comput. Geotech., 38(2), 281-286. https://doi.org/10.1016/j.compgeo.2010.11.008.
  29. Nasiri, F., Javdanian, H. and Heidari, A. (2020), "Seismic response analysis of embankment dams under decomposed earthquakes", Geomech. Eng., 21(1), 35-51. https://doi.org/10.12989/gae.2020.21.1.035.
  30. Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15, 139-160. http://dx.doi.org/10.1680/geot.1965.15.2.139.
  31. OMNR (2011), "Geotechnical design and factors of safety", Technical Bulletin, Ontario Ministry of Natural Resources, Canada.
  32. Pells, S. and Fell, R. (2002), "Damage and cracking of embankment dams by earthquakes and the implications for internal erosion and piping", Report No. R-408; School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia.
  33. Pourzangbar, A. (2012), "Determination of the most effective parameters on scour depth at seawalls using genetic programming (GP)", Proceedings of the 10th International Conference on Coasts, Ports and Marine Structures (ICOPMASS 2012), Tehran, Iran, November.
  34. Rathje, E.M. and Bray, J.D. (1999), "An examination of simplified earthquake-induced displacement procedures for earth structures", Can. Geoteh. J., 36(1), 72-87. https://doi.org/10.1139/t98-076.
  35. Sakamoto, T., Fujisawa, T., Nakamura, A., Yoshida, H. and Iwashita, T. (1998), "Safety estimation of rock-fill dams during major earthquakes", First U.S.-Japan Workshop on Advanced Research on Earthquake Engineering for Dams, Vicksburg, USA, November.
  36. Saridemir, M., Seercan, M.H. and Celikten, S. (2017), "Mechanical properties of SFRHSC with metakaolin and ground pumice: Experimental and predictive study", Steel Compos. Struct., 23(5), 543-555. https://doi.org/10.12989/scs.2017.23.5.543.
  37. Sattar, A.M. (2014), "Gene expression models for prediction of dam breach parameters", J. Hydroinform., 16(3), 550-571. https://doi.org/10.2166/hydro.2013.084.
  38. Saygili, G. and Rathje, E.M. (2008), "Empirical predictive models for earthquake-induced sliding displacements of slopes", J. Geotech. Geoenviron. Eng. - ASCE, 134(6), 790-803. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(790).
  39. Seed, H.B., Lee, K.L., Idriss, I.M. and Makdisi, F.I. (1975), "The slides in the San Fernando Dams during the earthquake of February 9, 1971", J. Soil Mech. Found. Eng. Division, 101(7), 651-688. https://doi.org/10.1061/AJGEB6.0000178.
  40. Seyrek, E. and Tosun, H. (2011), "Deterministic approach to the seismic hazard of dam sites in Kizilirmak basin, Turkey", Nat. Hazards, 59,787-800. https://doi.org/10.1007/s11069-011-9795-7.
  41. Singh, R., Roy, D. and Das, D. (2007), "A correlation for permanent earthquake-induced deformation of earth embankments", Eng. Geol., 90(3-4), 174-185. https://doi.org/10.1016/j.enggeo.2007.01.002.
  42. Sivrikaya, O., Kayadelen, C. and Cecen, E. (2013), "Prediction of the compaction parameters for coarse-grained soils with fines content by MLA and GEP", Acta Geotechnica Slovenica, 10(2), 29-41.
  43. Swaisgood, J.R. (2003), "Embankment dam deformations caused by earthquakes", Proceeding of the 7th Pacific Conference on Earthquake Engineering, Christchurc, New Zealand, February.
  44. Swaisgood, J.R. (2014), "Behavior of embankment dams during earthquake", J. Dam Saf., 12(2), 35-44.
  45. Taskiran, T. (2010), "Prediction of California bearing ratio (CBR) of fine grained soils by AI methods", Adv. Eng Softw., 41(6), 886-892. https://doi.org/10.1016/j.advengsoft.2010.01.003.
  46. Tosun, H. (2015), Earthquakes and Dams, In (Ed.), Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures, IntechOpen, London, UK.
  47. USACE (2022), RMC Empirical Crest Deformation Toolbox, US Army Corps of Engineers, Institute for Water Resources, Risk Management Center, https://www.rmc.usace.army.mil/Software/RMC/Toolboxes/Seismic-Hazard-Suite/.
  48. USBR (2019), "Seismic risks for embankments", Technical Report: Best Practices in Dam and Levee Safety Risk Analysis-Part IV-Embankments and Foundations, A Joint Publication by U.S. Department of the Interior Bureau of Reclamation and U.S. Army Corps of Engineers, USA.
  49. USCOLD (1992), "Observed performance of dams during earthquakes", Committee on Earthquakes, Denver, CO, USA.
  50. Uysal, F. (2020), "Prediction of collapse potential of soils using gene expression programming and parametric study", Arabian J. Geosci., 13(19), 1-13. https://doi.org/10.1007/s12517-020-06050-x.
  51. Yamanaka, V.H.A., Fernandez, R.M., Federman, D.K., Elizalde, M. and Aparicio, J. (2020), "Effects of the September 2017 Earthquakes on Mexican Dams", J. Perform. Constr. Fac., 34(4), 1-21. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001417.
  52. Yousif, O.S.Q., Zaidn, K., Alshkane, Y., Khani, A. and Hama, S.K. (2019), "Performance of Darbandikhan dam during a major earthquake on November 12, 2017", Proceedings of the 3rd Meeting of EWG Dams and Earthquakes, Lisbon, Portugal, May.
  53. Zhang , L.M., Xu, Y. and Jia, J.S. (2009), "Analysis of earth dam failures: A database approach", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3(3), 184-189. https://dx.doi.org/10.1080/17499510902831759.