참고문헌
- Adoko, A.C. and Wu, L. (2012), "Estimation of convergence of a high-speed railway tunnel in weak rocks using an adaptive neuro-fuzzy inference system (ANFIS) approach", J. Rock Mech.. Geotech. Eng., 4(1), 11-18. https://doi.org/https://doi.org/10.3724/SP.J.1235.2012.00011.
- Adoko, A.C., Jiao, Y.Y., Wu, L., Wang, H. and Wang, Z.H. (2013), "Predicting tunnel convergence using multivariate adaptive regression spline and artificial neural network", Tunn. Undergr. Sp. Tech., 38, 368-376. https://doi.org/https://doi.org/10.1016/j.tust.2013.07.023.
- Asadollahpour, E., Rahmannejad, R., Asghari, A. and Abdollahipour, A. (2014), "Back analysis of closure parameters of Panet equation and Burger׳s model of Babolak water tunnel conveyance", Int. J. Rock Mech. Min. Sci., 68, 159-166. https://doi.org/https://doi.org/10.1016/j.ijrmms.2014.02.017.
- Bai, X.D., Cheng, W.C., Ong, D.E.L. and Ge, L. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Debernardi, D. and Barla, G. (2009), "New viscoplastic model for design analysis of tunnels in squeezing conditions", Rock Mech. Rock Eng., 42(2), 259. https://doi.org/10.1007/s00603-009-0174-6.
- Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic Burger's material under hydrostatic stress field", Tunn. Undergr. Sp. Tech., 25(4), 297-304. https://doi.org/https://doi.org/10.1016/j.tust.2010.01.002.
- Fakhri, D., Khodayari, A., Mahmoodzadeh, A., Hosseini, M., Ibrahim, H. and Mohammed, A. (2022), "Prediction of mixed-mode I and II effective fracture toughness of several types of concrete using the extrema gradient boosting method and metaheuristic optimization algorithms", Eng. Fract. Mech., In press, https://doi.org/10.1016/j.engfracmech.2022.108916.
- Feng, X., Jimenez, R., Zeng, P. and Senent, S. (2019), "Prediction of time-dependent tunnel convergences using a Bayesian updating approach", Tunn. Undergr. Sp. Tech., 94, 103118. https://doi.org/https://doi.org/10.1016/j.tust.2019.103118.
- Gonzalez el A lamo, J.A. and Jimenez, R. (2011), "Prediction of convergences in rock tunnels excavated by conventional methods", Proceedings of the 12th ISRM Congress, Beijing, China.
- Guan, Z., Jiang, Y. and Tanabashi, Y. (2009), "Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling", Tunn. Undergr. Sp. Tech., 24(3), 250-259. https://doi.org/https://doi.org/10.1016/j.tust.2008.08.001.
- Hajihassani, M., Abdullah, S.S., Asteris, P.G. and Jahed Armaghani, D. (2019), "A gene expression programming model for predicting tunnel convergence", Appl. Sci., 9(21), 4650. https://doi.org/10.3390/app9214650.
- Kontogianni, V., Psimoulis, P. and Stiros, S. (2006), "What is the contribution of time-dependent deformation in tunnel convergence?", Eng. Geol., 82(4), 264-267. https://doi.org/https://doi.org/10.1016/j.enggeo.2005.11.001.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021a), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439.
- Liu, L.L., Yang, C. and Wang, X.M. (2021b), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. https://doi.org/10.12989/gae.2021.25.1.001.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), https://doi.org/10.12989/gae.2020.20.5.385.
- Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using artificial neural networks", Tunn. Undergr. Sp. Tech., 28, 218-228. https://doi.org/https://doi.org/10.1016/j.tust.2011.11.002 .
- Mahdevari, S., Shirzad Haghighat, H. and Torabi, S.R. (2013), "A dynamically approach based on SVM algorithm for prediction of tunnel convergence during excavation", Tunn. Undergr. Sp. Tech., 38, 59-68. https://doi.org/https://doi.org/10.1016/j.tust.2013.05.002.
- Mahdevari, S., Torabi, S.R. and Monjezi, M. (2012), "Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon", Int. J. Rock Mech. Min. Sci., 55, 33-44. https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.06.005.
- Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Mohammed, A., Ibrahim, H. and Rashidi, S. (2022a), "Numerical and Machine learning modeling of hard rock failure induced by structural planes around deep tunnels", Eng. Fract. Mech., 271, 108648. https://doi.org/10.1016/j.engfracmech.2022.108648.
- Mahmoodzadeh, A., Rashidi, S., Mohammed, A., Hama Ali, H. and Ibrahim, H. (2022b), Machine learning approaches to enable resource forecasting process of road tunnels construction. Communication Engineering and Computer Science, North America, mar. 2022. Available at: . Date accessed: 21 Sep. 2022. http://doi.org/10.24086/cocos2022/paper.718.
- Mirzaeiabdolyousefi, M., Mahmoodzadeh, A., Ibrahim, H., Rashidi, S., Majeed, M. and Mohammed, A. (2022), "Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression", Geomech. Eng., 30(1), 11-26. https://doi.org/10.12989/gae.2022.30.1.011.
- Nadimi, S., Shahriar, K., Sharifzadeh, M. and Moarefvand, P. (2011), "Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional Distinct Element Method", Tunn. Undergr. Sp. Tech., 26(1), 155-162. https://doi.org/https://doi.org/10.1016/j.tust.2010.09.002. Nomikos, P., Rahmannejad, R. and Sofianos, A. (2011),
- "Supported axisymmetric tunnels within linear viscoelastic burgers rocks", Rock Mech. Rock Eng., 44(5), 553-564. https://doi.org/10.1007/s00603-011-0159-0.
- Rafiai, H. and Moosavi, M. (2012), "An approximate ANN-based solution for convergence of lined circular tunnels in elasto-plastic rock masses with anisotropic stresses", Tunn. Undergr. Sp. Tech., 27(1), 52-59. https://doi.org/https://doi.org/10.1016/j.tust.2011.06.008.
- Sakurai, S. (1978), "Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face", Int. J. Numer. Anal. Method. Geomech., 2(2), 159-175. https://doi.org/10.1002/nag.1610020205.
- Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunn. Undergr. Sp. Tech., 38, 348-356. https://doi.org/https://doi.org/10.1016/j.tust.2013.07.014.
- Sterpi, D. and Gioda, G. (2009), "Visco-plastic behaviour around advancing tunnels in squeezing rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8.
- Torabi-Kaveh, M. and Sarshari, B. (2020), "Predicting convergence rate of namaklan twin tunnels using machine learning methods", Arabian J. Sci. Eng., 45(5), 3761-3780. https://doi.org/10.1007/s13369-019-04239-1.
- Vu, T.M., Sulem, J., Subrin, D., Monin, N. and Lascols, J. (2013), "Anisotropic closure in squeezing rocks: The example of Saint-Martin-la-Porte access gallery", Rock Mec. Rock Eng., 46(2), 231-246. https://doi.org/10.1007/s00603-012-0320-4.
- Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.