References
- Bano, N. and Nganbe, M. (2012), "Neural network approach for modeling the hysteresis energy of Ni based superalloys", Proceedings of the International Conference on Mechanical Engineering and Mechatronics, Ottawa.
- Bano, N. and Nganbe, M. (2013), "Modeling of thermal expansion coefficients of Ni based superalloys using Artificial Neural Networks", J. Mater. Eng. Perform., 22(4), 952-957. https://doi.org/10.1007/s11665-012-0398-6
- Bano, N., Fahim, A. and Nganbe, M. (2008), "Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using Neural Network", Proceedings of the Conference of Metallurgists, Winnipeg.
- Bano, N., Fahim, A. and Nganbe, M. (2010), "Fatigue crack initiation life prediction of IN738LC using Artificial Neural Network", Proceedings of the AES-ATEMA'2010 Fifth International Conference, Montreal, Quebec, Canada.
- Bano, N., Fahim, A. and Nganbe, M. (2010), "Neural network model to predict low cycle fatigue failure energy of Rene77", Proceedings of the AES-ATEMA'2010 Fifth International Conference, Montreal, Quebec, Canada.
- Biedermann, T.M., Reich, M., Kameier, F., Adam, M. and Paschereit, C.O. (2019), "Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems", Adv. Aircraft Spacecraft Sci., 6(6), 529-550. https://doi.org/10.12989/aas.2019.6.6.529.
- Caron, P. (2000). "High y'solvus new generation nickel-based superalloys for single crystal turbine blade applications", Superalloys, 2000, 737-746.
- Conduit, B.D., Jones, N.G., Stone, H.J. and Conduit, G.J. (2017), "Design of a nickel-base superalloy using a neural network", Mater. Des., 131, 358-365. https://doi.org/10.1016/j.matdes.2017.06.007.
- Das, N. (2010), "Advances in nickel-based cast superalloys", Trans. Ind. Inst. Metal., 63(2-3), 265-274. https://doi.org/10.1007/s12666-010-0036-7.
- Detrois, M., Rotella, J., Hardy M., et al. (2017), "Tailoring the properties of a Ni-based superalloy via modification of the forging process: An ICME approach to fatigue performance", Integr. Mater. Manuf. Innov., 6(4), 265-278. https://doi.org/10.1007/s40192-017-0103-6.
- Donachie, M.J. and Donachie, S.J. (2002), Superalloys: A Technical Guide, 2nd Edition, ASM Int., USA. Feng, S., Zhou, H. and Dong, H. (2019), "Using deep neural network with small dataset to predict material defects", Mater. Des., 162, 300-310. https://doi.org/10.1016/j.matdes.2018.11.060.
- Hasan, M.H., Al Hazza, M. and Mubarak W. (2014), "ANN modeling of nickel base super alloys for time dependent deformation", J. Automat. Control Eng., 2(4), 353-356. https://doi.org/10.12720/joace.2.4.353-356
- Haykin, S.O. (2009) Neural Networks and Learning Machines, 3rd Edition, McMaster University, Canada.
- Jones, J. and MacKay, D.J.C. (1996), "Neural network modeling of the mechanical properties of Nickel base superalloys", Eds. RD et al., Seven Springs, Pennsylvania, USA.
- Kuznetsov, V.P., Lesnikov, V.P. and Popov, N.A. (2004), "Structure and properties single-crystal hightemperature nickel alloy", UrFU. 160. (in Russian)
- Nurgayanova, O.S. and Ganeev, A.A. (2007), "Neural network approaches to the design of new hightemperature casting nickel alloys", Neurocomput.: Develop., Appl., 10, 70-74. (in Russian)
- Nurgayanova, O.S., Ganeev, A.A. and Pavlinich, S.P. (2006), "Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure", Polzunovsky Almanac, 3, 22-27. (in Russian)
- Olympio, K.R., Blender, F., Holz, M., Kommer, A. and Vetter, R. (2018), "Comparison of mass operator methods considering test uncertainties", Adv. Aircraft Spacecraft Sci., 5(2), 277-294. https://doi.org/10.12989/aas.2018.5.2.277.
- Pelleg, J. (2013), Mechanical Properties of Materials, Springer.
- Pollock, T.M. and Tin, S. (2006), "Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties", J. Propuls. Power, 22(2), 361-374. https://doi.org/10.2514/1.18239.
- Reed, R.C. (2006), The Superalloys. Fundamentals and Applications, Cambridge University Press.
- Tyagunov, A., Milder, O. and Tarasov, D. (2019a), "Application of Artificial Neural Networks for the replenishment of nickel-based superalloys catalogues", Proceedings 2nd European Conference on Electrical Engineering & Computer Science EECS 2018, IEEE Explore.
- Tyagunov, A., Milder, O. and Tarasov, D. (2019b), "Application of Artificial Neural Networks for prediction of nickel-based superalloys service properties based on the chemical composition", WSEAS Trans. Env. Devel., 15, 113-119.
- Tyagunov, A., Milder, O. and Tarasov, D. (2019c), "Deep learning in simulation of nickel-based superalloys ultimate tensile strength: Accounting the role of alloying elements", WSEAS Trans. Env. Devel., 15, 340-345.
- Yoo, Y.S., Kim, I.S., Kim, D.H., Jo, C.Y., Kim, H.M. and Jones, C.N. (2004), "The application of neural network to the development of single crystal superalloys", Superalloy., 2004, 942-950.
- Zhou, Y., Zhang, Z., Zhao, Z. and Zhong, Q. (2012), "Morphological evolution of γ' precipitates in a nickel-based superalloy during various solution treatments", Rare Metal., 31(3), 221-226. https://doi.org/10.1007/s12598-012-0495-6.