Acknowledgement
First author of this paper was financially supported jointly by MHRD, GoI, and Director, NIT Kurukshetra, through a Ph.D. scholarship grant (2K18/NITK/PHD/6180093).
References
- Al-Fatlawi, A., Jarmai, K. and Kovacs, G. (2021), "Optimal design of a lightweight composite sandwich plate used for airplane containers", Struct. Eng. Mech., 78(5), 611-622. https://doi.org/10.12989/sem.2021.78.5.611.
- Anderson, T.A. (2003), "A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274. https://doi.org/10.1016/S0263-8223(03)00013-8.
- Antony, S., Cherouat, A. and Montay, G. (2019), "Hemp fibre woven fabric /polypropylene based honeycomb sandwich structure for aerospace applications", Adv. Aircraft Spacecraft Sci., 6(2), 87-103. https://doi.org/10.12989/aas.2019.6.2.087.
- Averill, R.C. (1994), "Static and dynamic response of moderately thick laminated beams with damage", Compos. Eng. J., 4, 381-395. https://doi.org/10.1016/S0961-9526(09)80013-0.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. https://doi.org/10.12989/cme.2021.3.1.025.
- Brischetto, S., Carrera, E. and Demasi, L. (2009), "Improved bending analysis of sandwich plates using a zig-zag function", Compos. Struct., 89(3), 408-415. https://doi.org/10.1016/j.compstruct.2008.09.001.
- Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56(3), 287-308. https://doi.org/10.1115/1.1557614.
- Carrera, E. (2004), "On the use of the Murakami's zig-zag function in the modeling of layered plates and shells", Comput. Struct., 82(7-8), 541-554. https://doi.org/10.1016/j.compstruc.2004.02.006.
- Chakrabarti, A., Chalak, H.D., Iqbal, M.A. and Sheikh, A.H. (2011), "A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core", Compos. Struct., 93(2), 271-279. https://doi.org/10.1016/j.compstruct.2010.08.031.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
- Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A. H. (2013), "Free vibration analysis of laminated soft core sandwich plates", J. Vib. Acoust., 135(1), 011013. https://doi.org/10.1115/1.4007262.
- Chareonsuk, J. and Vessakosol, P. (2011), "Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method", Appl. Therm. Eng., 31(2-3), 213-227. https://doi.org/10.1016/j.applthermaleng.2010.09.001.
- Cho, Y.B. and Averill, R.C. (2000), "First order zigzag sub-laminate plate theory and finite element model for laminated composite and sandwich panels", Compos. Struct., 50, 1-15. https://doi.org/10.1016/S0263-8223(99)00063-X.
- Demasi, L. (2008), "∞3 Hierarchy plate theories for thick and thin composite plates: the generalized unified formulation", Compos. Struct., 84(3), 256-270. https://doi.org/10.1016/j.compstruct.2007.08.004.
- Di Sciuva, M. (1985), "Development of anisotropic multilayered shear deformable rectangular plate element", Comput. Struct., 21, 789-96. https://doi.org/10.1016/0045-7949(85)90155-5.
- Di Sciuva, M. (1993), "A general quadrilateral multilayered plate element with continuous interlaminar stresses", Comput. Struct., 47, 91-105. https://doi.org/10.1016/0045-7949(93)90282-I.
- Ebrahimi, F. and Barati, M.R. (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation", Adv. Nano Res., 59(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313.
- Ebrahimi, M.J. and Najafizadeh, M.M. (2014), "Free vibration analysis of two-dimensional functionally graded cylindrical shells", Appl. Math Model., 38(1), 308-324. https://doi.org/10.1016/j.apm.2013.06.015.
- El-Galy, I.M., Bassiouny, I.S. and Mahmoud, H.A. (2019), "Functionally graded materials classifications and development trends from industrial point of view", S.N. Appl. Sci., 1(11), 1-23. https://doi.org/10.1007/s42452-019-1413-4.
- Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica, 1-16. https://doi.org/10.1007/s10338-021-00295-z.
- Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
- Khalafi, V. and Fazilati, J. (2021), "Free vibration analysis of functionally graded plates containing embedded curved cracks", Struct. Eng. Mech., 79(2), 157-168. https://doi.org/10.12989/sem.2021.79.2.157.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
- Moleiro, F., Correia, V.F., Araujo, A.L., Soares, C.M., Ferreira, A.J.M. and Reddy, J.N. (2019), "Deformations and stresses of multilayered plates with embedded functionally graded material layers using a layerwise mixed model", Compos. Part B: Eng., 156, 274-291. https://doi.org/10.1016/j.compositesb.2018.08.095.
- Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses.", J. Appl. Mech., 53(3), 661-666. https://doi.org/10.1115/1.3171828.
- Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R.M.N., Mota Soares, C.M. and Araujo, A.L. (2017), "Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories", Mech. Adv. Mater. Struct., 24(5), 360-376. https://doi.org/10.1080/15376494.2016.1191095.
- Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091.
- Owoputi, A.O., Inambao, F.L. and Ebhota, W.S. (2018), "A review of functionally graded materials: fabrication processes and applications", Int. J. Appl. Eng. Res., 13(23), 16141-16151.
- Pandey, S. and Pradyumna, S. (2018), "Analysis of functionally graded sandwich plates using a higher-order layerwise theory", Compos. Part B: Eng., 153, 325-336. https://doi.org/10.1016/j.compositesb.2018.08.121.
- Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Shariyat, M. and Alipour, M.M. (2015), "Novel layerwise shear correction factors for zigzag theories of circular sandwich plates with functionally graded layers", Lat. Am. J. Solid. Struct., 12(7), 1362-1396. https://doi.org/10.1590/1679-78251477.
- Sharma, R., Jadon, V. and Singh, B. (2015), "A review on the finite element methods for heat conduction in functionally graded materials", J. Inst. Eng., 96(1), 73-81. https://doi.org/10.1007/s40032-014-0125-1.
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070.
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.
- Vel, S.S. and Batra, R. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7.
- Woodward, B. and Kashtalyan, M. (2010), "Bending response of sandwich panels with graded core: 3D elasticity analysis", Mech. Adv. Mater. Struct., 17(8), 586-594. https://doi.org/10.1080/15376494.2010.517728.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42(18-19), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
- Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42(18-19), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.