Acknowledgement
본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다. 본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-003).
References
- Li, B, Ho, S. S. H., Li, X. Guo, L., Chen, A., Yang, Y., Chen. D., Lin, and A., Fang, X., "A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook," Environ. Int., 156, 106710 (2021).
- Suzuki, N., Nakaoka, H., Nakayama, Y., Tsumura, K., Takaguchi, K., Takaya, K., Eguchi, A., Hanazato, M., Todaka, E., and Mori, C., "Association between sum of volatile organic compounds and occurrence of building-related symptoms in humans: A study in real full-scale laboratory houses," Sci. Total Environ., 750, 141635 (2021).
- Zhang, T., Li, G., Yu, Y., Ji, Y., and An, T., "Atmospheric diffusion profiles and health risks of typical VOC: Numerical modelling study," J. Clean. Prod., 275, 122982 (2020).
- Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li Y., "Adsorption of VOCs onto engineered carbon materials: A review," J. Hazard. Mater., 338, 102 (2017).
- Kim, B. R., "VOC emissions from automotive painting and their control: A review," Environ. Eng. Res., 16, 1 (2011).
- Laskar, I. I., Hashisho, Z., Phillips, J. H., Anderson, J. E., and Nichols, M., "Modeling the Effect of Relative Humidity on Adsorption Dynamics of Volatile Organic Compound onto Activated Carbon," Environ. Sci. Technol., 53, 2647 (2019).
- Cheng, Q., and Zhang, G. K., "Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review," Tungsten, 2, 240 (2020).
- Rao, Z., Lu, G., Chen, L., Mahmood, A., Shi, G., Tang, Z., Xie, X., and Sun, J., "Photocatalytic oxidation mechanism of Gas-Phase VOCs: Unveiling the role of holes, .OH and .O2-," Chem. Eng. J., 430, 132766 (2022).
- Zhu, L., Shen, D., and Luo, K. H., "A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods," J. Hazard. Mater., 389, 122102 (2020).
- Kim, J. and Lee, B. K., "Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber," Process Saf. Environ. Prot., 119, 164 (2018).
- Shah, K. W. and Li, W. "A review on catalytic nanomaterials for volatile organic compounds VOC removal and their applications for healthy buildings," Nanomaterials, 9, 910 (2019).
- Gandolfo, A., Marque, S., Temime-Roussel, B., Gemayel, R., Wortham H., Truffier-Boutry, D., Bartolomei, V., and Gligorovski, S., "Unexpectedly High Levels of Organic Compounds Released by Indoor Photocatalytic Paints," Environ. Sci. Technol., 52, 11328 (2018).
- Kato, H. and Kudo, A., "Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium," J. Phys. Chem. B, 106, 5029 (2002).
- Cuerda-Correa, E. M., Alexandre-Franco, M. F., and Fernandez-Gonzalez, C., "Advanced oxidation processes for the removal of antibiotics from water. An overview," Water, 12, 102 (2020).
- Raizada, P., Sudhaik, A., and Singh, P., "Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review," Mater. Sci. Energy Technol., 2, 509 (2019).
- Ong, C. B., Ng, L. Y., and Mohammad, A. W., "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications,"Renew. Sustain. Energy Rev., 81, 536 (2018).
- Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., and Wang, X., "Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances," Chem. Soc. Rev., 43, 5234 (2014).
- Hong, E., Choi, T., and Kim, J. H., "Application of content optimized ZnS-ZnO-CuS-CdS heterostructured photocatalyst for solar water splitting and organic dye decomposition," Korean J. Chem. Eng., 32, 424 (2015).
- Li, J., Zhao, Y., Xia, M., An, H., Bai, H., Wei, J., Yang, B., and Yang, G. "Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis,"Appl. Catal. B Environ., 261, 118244 (2020).
- Veerakumar, P., Sangili, A., Saranya, K., Pandikumar, A., and Lin, C. K., "Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides," Chem. Eng. J., 410, 128434 (2021).
- Drmosh, Q. A., Wajih, Y. A. A., Alade, I. O., Mohamedkhair, A. K., Qamar, M., Hakeem, A. S., and Yamani, Z. H.,"Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing," Sensors Actuators, B Chem., 338, 129851 (2021).
- Han, Z., Ren, L., Cui, Z., Chen, C., Pan, H., and Chen, J.,"Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance," Appl. Catal. B Environ., 126, 298 (2012).
- Cerron-Calle, G. A., Aranda-Aguirre, A. J., Luyo, C., Garcia-Segura, S., and Alarcon, H.,"Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles," Chemosphere, 219, 296 (2019).
- Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., lv, Y., Guo, T., Zhao, Y., and Zhu, C.,"Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance," J. Hazard. Mater., 182, 123 (2010).
- Ha, L. P. P., Vinh, T. H. T., Thuy, N. T. B., Thi, C. M., and Van, V. P. "Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations," J. Environ. Chem. Eng., 9, 105103 (2021).
- Jun, H. Y., Chang, C. H., Ahn, K. S., Ryu, S. O., and Choi, C.-H. "Microfluidics-enabled rational design for Ag-ZnO nanocomposite films for enhanced photoelectrochemical performance," Cryst. Eng. Comm., 22, 646 (2020).
- Ko, J.-R., Jun, H. Y., and Choi, C.-H.,"Microfluidic assisted synthesis of Ag-ZnO nanocomposite for enhanced photocatalytic activity," Clean Technol., 27, 291 (2021).
- Hao, N., Xu, Z., Nie, Y., Jin, C., Closson, A. B., Zhang, M., and Zhang, J. X. J.,"Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties," Chem. Eng. J., 378, 122222 (2019).
- Choi, C.-H., and Chang, C.-H., "Aqueous synthesis of tailored ZnO nanocrystals, nanocrystal assemblies, and nanostructured films by physical means enabled by a continuous flow microreactor,"Cryst. Growth Des., 14, 4759 (2014).
- Hao, N., Zhang, M, and Zhang, J. X. J., "Microfluidics for ZnO micro-/nanomaterials development: Rational design, controllable synthesis, and on-chip bioapplications," Biomater. Sci., 8, 1783 (2020).
- Mull, B., Mohlmann, L., and Wilke, O., "Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst," Environments, 4, 9 (2017).