DOI QR코드

DOI QR Code

단일 및 이중 림 어레이 안테나 기반 캐스케이드 AOA 추정 알고리즘의 계산복잡도 분석

Analysis of Computational Complexity for Cascade AOA Estimation Algorithm Based on Single and Double Rim Array Antennas

  • 김태윤 (조선대학교 AI융합연구원) ;
  • 황석승 (조선대학교 전자공학부)
  • 투고 : 2022.10.30
  • 심사 : 2022.12.17
  • 발행 : 2022.12.31

초록

매시브 배열 안테나를 이용한 매시브 MIMO(: Multi Input Multi Output) 기술을 이용하기 위해서는 신호의 도래각(Angle of Arrival : AOA) 파악이 필수적으로 요구된다. 매시브 배열 안테나를 하면 기존 AOA 추정 알고리즘은 뛰어난 추정 성능을 갖지만, 안테나 요소 수에 비례하여 계산복잡도가 증가하는 단점이 있다. 이러한 문제를 해결하기 위해 캐스케이드 AOA 추정 알고리즘이 제안되었으며 다수의 논문을 통해 단일 형상의 (비)매시브 배열 안테나에 대한 성능이 입증되었다. 하지만 단일 및 이중 림 어레이 안테나가 적용된 캐스케이드 AOA 추정 알고리즘의 계산복잡도 비교는 이루어지지 않았다. 본 논문에서는 단일 및 이중 림 어레이를 캐스케이드 AOA 추정 알고리즘에 적용된 경우 AOA 추정을 위한 계산복잡도를 비교 분석한다.

In order to use the Massive MIMO (Multi Input Multi Output) technology using the massive array antenna, it is essential to know the angle of arrival (AOA) of the signal. When using a massive array antenna, the existing AOA estimation algorithm has excellent estimation performance, but also has a disadvantage in that computational complexity increases in proportion to the number of antenna elements. To solve this problem, a cascade AOA estimation algorithm has been proposed and the performance of a single-shaped (non)massive array antenna has been proven through a number of papers. However, the computational complexity of the cascade AOA estimation algorithm to which single and double rim array antennas are applied has not been compared. In this paper, we compare and analyze the computational complexity for AOA estimation when single and double rim array antennas are applied to the cascade AOA estimation algorithm.

키워드

과제정보

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력선도대학 육성사업 (LINC3.0)의 연구결과입니다. 이 논문은 2022년도 조선대학교 연구비의 지원을 받아 연구되었음

참고문헌

  1. ITU-R M. 2083-0, "IMT Vision - Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond," Report, Sept. 2015.
  2. C. Seker, M. T. Guneser, and T. Ozturk, "A Review of Millimeter Wave Communication for 5G," 2018 2nd Int. Symp. Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, Oct. 2028, pp. 19-21.
  3. J. Zhang, E. Bjornson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Prospective multiple antenna technologies for beyond 5G," IEEE J. on Selected Areas in Communications, vol. 38, no. 8, 2020, pp. 1637-1660. https://doi.org/10.1109/jsac.2020.3000826
  4. H. Park and S. Hwang, "AIC & MDL Algorithm Based on Beamspace, for Efficient Estimation of the Number of Signals," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 4, 2021, pp. 617-624. https://doi.org/10.13067/JKIECS.2021.16.4.617
  5. T. Kim, J. Mun, and S. Hwang, "A cascade AOA estimation technique with rectangular array antenna,". In 2018 Int. Symp. on Antennas and Propagation (ISAP), Busan, Korea, Oct, 2018, pp. 1-2.
  6. T. Kim and S. Hwang, "Performance Evaluation of Cascade AOA Estimation Algorithm Based on Square Array Antenna," J. of the Korea institute of electronic communication sciences, vol. 15, no. 6, 2019, pp. 1053-1060.
  7. T. Kim and S. Hwang, "Performance evaluation of cascade AOA estimator based on uniform circular array," J. of Positioning, Navigation, and Timing, vol. 9, no. 2, 2020, pp. 65-70. https://doi.org/10.11003/JPNT.2020.9.2.65
  8. T. Kim and S. Hwang, "Cascade AOA estimation algorithm based on flexible massive antenna array," Sensors, vol. 20, no. 23, 2020, pp. 1-23. https://doi.org/10.1109/JSEN.2019.2959158
  9. Z. N. Morris and K. T. Wong, "Comparing the "Rim" Versus the "Filled" Rectangular Array Grids-Their Direction-Finding Cramer-Rao Bounds," IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 4, 2018, pp. 1945-1956. https://doi.org/10.1109/taes.2018.2879555
  10. J. Mun and S. Hwang, "Input Signal Model Analysis for Adaptive Beamformer," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 3, 2017, pp. 433-438. https://doi.org/10.13067/JKIECS.2017.12.3.433