DOI QR코드

DOI QR Code

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Baghdad, Krour (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Mohamed A., Benatta (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Zouaoui R., Harrat (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes) ;
  • Sofiane, Amziane (Clermont Auvergne University, CNRS, Sigma, Institut Pascal) ;
  • Mohamed Bachir, Bouiadjra (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, University of Djillali Liabes)
  • Received : 2021.03.22
  • Accepted : 2022.11.30
  • Published : 2022.12.10

Abstract

Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

Keywords

Acknowledgement

The study described in this paper was financially supported by the Algerian Ministry of Higher Education and Scientific Research. The authors, also, gratefully acknowledge the support of the Thematic Agency for Research in Science and Technology (ATRST) of Algiers, Algeria.

References

  1. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  2. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with SiO2 nanoparticles subjected to blast load", Adv. Concrete Constr., 7(1), 51-63. http://doi.org/10.12989/acc.2019.7.1.051.
  3. Bakhadda, B., Bouiadjra, B.M., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmou, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. http://doi.org/10.12989/was.2018.27.5.311.
  4. Behzadian, R. and Shahrajabian, H. (2019), "Experimental study of the effect of nano-silica on the mechanical properties of concrete/PET composites", KSCE J. Civil Eng., 23(8), 3660-3668. https://doi.org/10.1007/s12205-019-2440-9.
  5. Belkorissat, I., Houari, S.A.M., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  6. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2015), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position". J Brazil Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  7. Bernardin, L., Chin, P., DeMarco, P. and Geddes, K. (2011), Maple Programming Guide.
  8. Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665.
  9. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1307. http://doi.org/10.12989/scs.2016.21.6.1287.
  10. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386.
  11. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490.
  12. El-Feky, M.S., Passant Youssef, A.E.T. and Serag, M. (2019), "Indirect sonication effect on the dispersion, reactivity, and microstructure of ordinary Portland cement matrix", AIMS Mater. Sci., 6(5), 781-797. https://doi.org/10.3934/matersci.2019.5.781.
  13. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. http://doi.org/10.12989/sem.2017.63.5.585.
  14. Givi, A.N., Rashid, S.A., Aziz, F.N. and Salleh, M.A. (2010), "Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete", Compos. Part B: Eng., 41, 673-677. https://doi.org/10.1016/j.compositesb.2010.08.003.
  15. Harrat, Z.R., Amziane, S., Krour, B. and Bachir Bouiadjra, M. (2021), "On the static behavior of nano SiO2 based concrete beams resting on an elastic foundation", Comput. Concrete, 27(6), 575-583. https://doi.org/10.12989/cac.2021.27.6.575.
  16. Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002.
  17. Jones, R.M. (1999), Mechanics of Composite Materials, Taylor & Francis, Philadelphia.
  18. Kettaf, F.Z, Houari, S.A.M., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15, 399-423. http://doi.org/10.12989/scs.2013.15.4.399.
  19. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.
  20. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  21. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear flexural motions of isotropic elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1007/978-1-4613-8865-4_29.
  22. Mondal, P., Shah, S.P., Marks, L.D. and Gaitero, J.J. (2010), "Comparative study of the effects of microsilica and nanosilica in concrete", Transp. Res. Record, 2141(1), 6-9. https://doi.org/10.3141.2141.02. https://doi.org/10.3141.2141.02
  23. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J Appl Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.
  24. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  25. Rong, Z., Sun, W., Xiao, H. and Jiang, G. (2015), "Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites", Cement Concretec Compos., 56, 25-31. https://doi.org/10.1016/j.cemconcomp.2014.11.001.
  26. Rupasinghe, M., Mendis, P., Tuan, N., Ngoc, N.T. and Sofi, M. (2017), "Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach", Mater. Des., 115, 379-392. https://doi.org/10.1016/j.matdes.2016.11.058.
  27. Shi, D.L., Feng, X.Q., Huang Y.Y., Hwang K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol.-ASME, 126(3), 250-270. https://doi.org/10.1115/1.1751182.
  28. Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  29. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
  30. Thai, H.T. and Choi, D.H. (2014), "Zeroth-order shear deformation theory for functionally graded plates resting on elastic foundation", Int. J. Mech. Sci., 78, 35-43. https://doi.org/10.1016/j.ijmecsci.2013.09.020.
  31. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  32. Yahia, A.S., Atmane, A.H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  33. Yu, J., Zhang, M., Li, G., Meng, J. and Leung, C.K.Y. (2020), "Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar", Constr. Build. Mater., 239, 117853. https://doi.org/10.1016/j.conbuildmat.2019.117853.
  34. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behavior of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. http://doi.org/10.12989/was.2017.24.1.043.