DOI QR코드

DOI QR Code

Analysis of Transfer Learning Effect for Automatic Dog Breed Classification

반려견 자동 품종 분류를 위한 전이학습 효과 분석

  • Lee, Dongsu (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology) ;
  • Park, Gooman (Graduate School of Nano IT Design Fusion, Seoul National University of Science and Technology)
  • 이동수 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 박구만 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2021.12.08
  • Accepted : 2021.12.14
  • Published : 2022.01.30

Abstract

Compared to the continuously increasing dog population and industry size in Korea, systematic analysis of related data and research on breed classification methods are very insufficient. In this paper, an automatic breed classification method is proposed using deep learning technology for 14 major dog breeds domestically raised. To do this, dog images are collected for deep learning training and a dataset is built, and a breed classification algorithm is created by performing transfer learning based on VGG-16 and Resnet-34 as backbone networks. In order to check the transfer learning effect of the two models on dog images, we compared the use of pre-trained weights and the experiment of updating the weights. When fine tuning was performed based on VGG-16 backbone network, in the final model, the accuracy of Top 1 was about 89% and that of Top 3 was about 94%, respectively. The domestic dog breed classification method and data construction proposed in this paper have the potential to be used for various application purposes, such as classification of abandoned and lost dog breeds in animal protection centers or utilization in pet-feed industry.

국내에서 지속적으로 증가하는 반려견 인구 및 산업 규모에 비해 이와 관련한 데이터의 체계적인 분석이나 품종 분류 방법 연구 등은 매우 부족한 실정이다. 본 논문에서는 국내에서 양육되는 반려견의 주요 14개 품종에 대해 딥러닝 기술을 이용한 자동 품종 분류 방법을 수행하였다. 이를 위해 먼저 딥러닝 학습을 위한 반려견 이미지를 수집하고 데이터셋을 구축하였으며, VGG-16 및 Resnet-34를 백본 네트워크로 사용하는 전이학습을 각각 수행하여 품종 분류 알고리즘을 만들었다. 반려견 이미지에 대한 두 모델의 전이학습 효과를 확인하기 위해, Pre-trained 가중치를 사용한 것과 가중치를 업데이트하는 실험을 수행하여 비교하였으며, VGG-16 기반으로 fine tuning을 수행했을 때, 최종 모델에서 Top 1 정확도는 약 89%, Top 3 정확도는 약 94%의 정확도 성능을 각각 얻을수 있었다. 본 논문에서 제안하는 국내의 주요 반려견 품종 분류 방법 및 데이터 구축은 동물보호센터에서의 유기·유실견 품종 구분이나 사료 산업체에서의 활용 등 여러가지 응용 목적으로도 활용될 수 있는 가능성을 가지고 있다.

Keywords

References

  1. Ministry of Agriculture, Food and Rural Affairs, Report on the Protection and Welfare Survey for Pets 2020, News Publishment, May 18, 2021.
  2. J. Cho, C. Lee, M. Kim, S. Kim, and S. Jang, "Study of Pets Dectection." Proceedings of the Korean Institute of Information Scientists and Engineers Conference, pp.1527-1529, 2020.
  3. M. Lee, J. Park, and J. Jeong, "An improved system of Dog Identification based on Muzzle Pattern." Proceedings of the Korean Society of Broadcast and Media Engineers Conference, pp.199-202, 2015
  4. J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur, "Dog Breed Classification using Part Localization." European Conference on Computer Vision(ECCV), pp.172-185, 2012.
  5. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556v6, 2015.
  6. K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016
  7. K. Etemad and R. Chellappa, "Discriminant Analysis for Recognition of Human Face Images," Journal of the Optical Society of America A, vol. 14, no. 8, pp. 1724-1733, 1997. https://doi.org/10.1364/JOSAA.14.001724
  8. W. Zhao, A. Krishnaswamy, R. Chellappa, D. L. Swets, and J. Weng, Face Recognition: From Theory to Applications, pp. 73-85, Springer, 1998.
  9. C. Chan, J. Kittler, and K. Messer, "Multi-scale Local Binary Pattern Histograms for Face Recognition," International conference on biometrics, pp. 809-818, Springer, 2007.
  10. L. Wolf, T. Hassner, and Y. Taigman, "Descriptor based Methods in the Wild," in Workshop on Faces in 'Real-Life' Images: Detection, Alignment, and Recognition, Marseille, France, 2008.
  11. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Deepface: Closing the Gap to Human-level Performance in Face Verification," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-1708, 2014.
  12. F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A Unified Embedding for Face Recognition and Clustering," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815-823, 2015.
  13. M. D. Zeiler and R. Fergus. "Visualizing and Understanding Convolutional Networks." European Conference on Computer Vision(ECCV), pp.818-833, 2014.
  14. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. "Going Deeper with Convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-9, 2015.
  15. Y. Sun, X. Wang, and X. Tang. "Deeply Learned Face Representations are Sparse, Selective, and Robust." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2892-2900, 2015.
  16. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. "SphereFace: Deep Hypersphere Embedding for Face Recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.212-220, 2017.
  17. H. Wang, Y. Wang, Z. Zhou, X. Ji, Z. Li, D. Gong, J. Zhou, and W. Liu, "Cosface: Large margin cosine loss for deep face recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salk Lake City, US, pp. 5265-5274, 2018,
  18. X. Wang., V. Ly, S. Sorensen, and C. Kambhamettu, "Dog Breed Classification via Landmarks," IEEE International Conference on Image Processing (ICIP), pp. 5237-5241, 2015, https://doi.org/10.1109/ICIP.2014.7026060.
  19. G. Mougeot, D. Li, and S Jia, "A Deep Learning Approach for Dog Face Verification and Recognition." PRICAI 2019: Trends in Artificial Intelligence, pp. 418-430, 2019, https://doi.org/10.1007/978-3-030-29894-4_34.
  20. Adam Klein. "Pet Cat Face Verification and Identification." Stanford University, CS230 Fall 2019.