Acknowledgement
This work was supported by Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2014-3-00123, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis).
References
- Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., & Huang, T., Youtube-vos: A large-scale video object segmentation benchmark, arXiv preprint arXiv:1809.03327, 2018.
- Shorten, C., & Khoshgoftaar, T. M., A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1-48, 2019. https://doi.org/10.1186/s40537-018-0162-3
- Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T. Y., Cubuk, E. D., ... & Zoph, B., Simple copy-paste is a strong data augmentation method for instance segmentation, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2918-2928, 2021.
- Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y., Cutmix: Regularization strategy to train strong classifiers with localizable features, In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6023-6032), 2019.
- Caelles, Sergi, et al., "One-shot video object segmentation.", Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
- Xiao, Huaxin, et al, "Monet: Deep motion exploitation for video object segmentation.", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
- Voigtlaender, Paul, and Bastian Leibe., "Online adaptation of convolutional neural networks for video object segmentation.", arXiv preprint arXiv:1706.09364, 2017.
- Perazzi, Federico, et al., "Learning video object segmentation from static images.", Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
- Luiten, J., Voigtlaender, P., & Leibe, B. Premvos: Proposal-generation, refinement and merging for video object segmentation. In Asian Conference on Computer Vision (pp. 565-580). Springer, Cham, December 2018.
- Oh, Seoung Wug, et al., "Video object segmentation using space-time memory networks." Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.
- Cheng, H. K., Tai, Y. W., & Tang, C. K., Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation, arXiv preprint arXiv:2106.05210, 2021.
- Yun, S., Oh, S. J., Heo, B., Han, D., & Kim, J., VideoMix: Rethinking Data Augmentation for Video Classification, arXiv preprint arXiv: 2012.03457, 2020.
- MISRA, Ishan; ZITNICK, C. Lawrence; HEBERT, Martial., Shuffle and learn: unsupervised learning using temporal order verification. In: European Conference on Computer Vision. Springer, Cham, p. 527-544, 2016.
- Lai, Z., & Xie, W., Self-supervised learning for video correspondence flow, arXiv preprint arXiv:1905.00875, 2019.