Acknowledgement
This work was supported by the Scientific and Technological Research Program of the Jilin Province Department of Education [Grant 20190016KJ], and the National Nature Science Foundation of China [Grant 61520106008].
References
- Xiong, R., Pan, Y., Shen, W., et al.: Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew Sustain Energy Rev. 131, 110048 (2020)
- Lipu, M.S.H., Hannan, M.A., Hussain, A., et al.: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Cleaner Prod. 205, 115-133 (2018) https://doi.org/10.1016/j.jclepro.2018.09.065
- Ungurean, L., Carstoiu, G., Micea, M.V., et al.: Battery state of health estimation: a structured review of models, methods and commercial devices. Int. J. Energy Res. 41(2), 151-181 (2017) https://doi.org/10.1002/er.3598
- Feng, H., Shi, G.: SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression. J. Power Electron. 21, 1845-1854 (2021) https://doi.org/10.1007/s43236-021-00318-5
- Ma, Y., Chen, Y., Zhou, X., et al.: Remaining useful life prediction of lithium-ion battery based on Gauss-Hermite particle filter. IEEE Trans. Control Syst. Technol. 27(4), 1788-1795 (2019) https://doi.org/10.1109/tcst.2018.2819965
- Severson, K.A., Attia, P.M., Jin, N., et al.: Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4(5), 383-391 (2019) https://doi.org/10.1038/s41560-019-0356-8
- Zheng, X., Fang, H.: An integrated unscented Kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. IEEE Trans. Ind. Electron. 144, 74-82 (2015)
- Sihvo, J., Roinila, T., Stroe, D.-I.: Novel fitting algorithm for parametrization of equivalent circuit model of li-ion battery from broadband impedance measurements. IEEE Trans. Ind. Electron. 68(6), 4916-4926 (2021) https://doi.org/10.1109/TIE.2020.2988235
- Ma, Y., Li, X., Li, G., et al.: SOC oriented electrochemical-thermal coupled modeling for lithium-ion battery. IEEE Access 7, 156136 (2019)
- Hussein, A.A.: Capacity fade estimation in electric vehicle li-ion batteries using artificial neural networks. IEEE Trans. Ind. Appl. 51(3), 677-681 (2015) https://doi.org/10.1109/TIA.2014.2365152
- Liu, H., Song, W., Niu, Y., et al.: A generalized Cauchy method for remaining useful life prediction of wind turbine gearboxes. Mech. Syst. Signal Process 153, 107471 (2021)
- Motahari-Nezhad, M., Jafari, S.M.: Bearing remaining useful life prediction under starved lubricating condition using time domain acoustic emission signal processing. Expert Syst. Appl. 168, 114391 (2021)
- Zhai, Q., Ye, Z.: RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Trans. Industr. Inform. 13(6), 2911-2921 (2017) https://doi.org/10.1109/TII.2017.2684821
- Han, Y., Ma, C., Tang, S., Wang, F., Sun, X., Si, X.: Residual life estimation of lithium-ion batteries based on nonlinear Wiener process with measurement error. P. I. Mech. Eng. O-J. Ris. 1748006X221080345 (2022)
- Si, X.: An adaptive prognostic approach via nonlinear degradation modeling: Application to battery data. IEEE Trans. Ind. Electron. 62(8), 5082-5096 (2015) https://doi.org/10.1109/TIE.2015.2393840
- Dong, G., Chen, Z., Wei, J., et al.: Battery health prognosis using Brownian motion modeling and particle filtering. Trans. Ind. Electron. 65(11), 8646-8655 (2018) https://doi.org/10.1109/TIE.2018.2813964
- Li, T., Pei, H., Pang, Z., et al.: A sequential Bayesian updated Wiener process model for remaining useful life prediction. IEEE Access 8, 5471-5480 (2020) https://doi.org/10.1109/access.2019.2962502
- Kong, J., Wang, D., Yan, T., Zhu, J., Zhang, X.: Accelerated stress factors based nonlinear wiener process model for lithium-ion battery prognostics. IEEE Trans. Ind. Electron. 69(11), 11665-11674 (2022) https://doi.org/10.1109/TIE.2021.3127035
- Zhang, S., Zhai, Q., Shi, X., Liu, X.: A Wiener Process Model with Dynamic Covariate for Degradation Modeling and Remaining Useful Life Prediction. IEEE Trans. Reliab. (2022) https://doi.org/10.1109/tr.2003.821922
- Zhang, H., Chen, M., Shang, J., Yang, C., Sun, Y.: Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion. Sci. China Inf. Sci. 64(7), 171201 (2021)
- Zhang, H., Jia, C., Chen, M.Y.: Remaining useful life prediction for degradation processes with dependent and nonstationary increments. IEEE Trans. Instrum. Meas. 70, 3519212 (2021)
- Xi, X., Chen, M., Zhang, H., et al.: An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty. Mech. Syst. Signal Process 105, 467-480 (2018) https://doi.org/10.1016/j.ymssp.2017.12.017
- Zhang, H., Zhou, D., Chena, M., et al.: Predicting remaining useful life based on a generalized degradation with fractional Brownian motion. Mech. Syst. Signal Process 115, 736-752 (2019) https://doi.org/10.1016/j.ymssp.2018.06.029
- Reis, G., Strange, C., Yadav, M., Li S.: Lithium-ion battery data and where to find it. Energy AI 5, 100081 (2021)
- Wang, H., Song, W., Zio, E., et al.: Remaining useful life prediction for lithium-ion batteries using fractional Brownian motion and fruit-fly optimization algorithm. Measurement 161, 107904 (2020)
- Wang, D., Tsui, K.L.: Brownian motion with adaptive drift for remaining useful life prediction: Revisited. Mech. Syst. Signal Process 99, 691-701 (2018) https://doi.org/10.1016/j.ymssp.2017.07.015
- Zhang, H., Zhou, D., Chen, M., et al.: FBM-based remaining useful life prediction for degradation processes with long-range dependence and multiple modes. IEEE Trans. Reliab. 68(3), 1021-1033 (2019) https://doi.org/10.1109/tr.2018.2877643
- Xi, X., Zhou, D., Chen, M., et al.: Remaining useful life prediction for fractional degradation processes under varying modes. Can. J. Chem. Eng. 98(6), 1351-1364 (2020) https://doi.org/10.1002/cjce.23666
- Sottinen, T.: Fractional Brownian motion, random walks and binary market models. Finance Stoch. 5(3), 343-355 (2001) https://doi.org/10.1007/PL00013536
- Konstantopoulos, T., Sakhanenko, A.: Convergence and convergence rate to fractional Brownian motion for weighted random sums. A. Sakhanenko. Sib. Electron. Math. Re. 1, 47-63 (2004)
- Zhang, H., Chen, M., Xi, X., et al.: Remaining useful life prediction for degradation processes with long-range dependence. IEEE Trans. Reliab. 66(4), 1368-1379 (2017) https://doi.org/10.1109/TR.2017.2720752
- Li, X., Ma, Y., Zhu, J.: An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine. Measurement 184, 109935 (2021)
- Liu, D., Luo, Y., Liu, J., Peng, Y., Guo, L., Pecht, M.: Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput. Appl. 25, 557-572 (2014) https://doi.org/10.1007/s00521-013-1520-x
- Song, Y., Liu, D., Hou, Y., Yu, J., Peng, Y.: Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm. Chin. J. Aeronaut. 31(1), 31-40 (2018) https://doi.org/10.1016/j.cja.2017.11.010