DOI QR코드

DOI QR Code

Analysis of a coupled inductor boost three-port converter with high voltage gain for renewable energy systems

  • Ming, Gao (College of Electrical Engineering, Zhejiang University) ;
  • Shanshan, Wang (College of Electrical Engineering, Zhejiang University) ;
  • Weichen, Yu (College of Electrical Engineering, Zhejiang University) ;
  • Tao, Liu (State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources) ;
  • Jianjiang, Shi (College of Electrical Engineering, Zhejiang University)
  • 투고 : 2022.04.15
  • 심사 : 2022.09.19
  • 발행 : 2022.12.20

초록

A conventional boost three-port converter is combined with a coupled-inductor-based boost-flyback converter in this work to produce a high-step-up three-port converter. The proposed converter inherits the benefits of two conventional converters, including high voltage gain, few elements, and energy recycling of the leakage inductor. In addition, the voltage stresses of switches are considerably lower than the output voltage. Therefore, switches with low ON resistance can be selected to reduce the conduction loss. Additionally, the freewheel diodes are capable of zero-current switching. The operation principle can be divided into three modes of operation, and the three steady-state operation modes are analyzed under each of the three conduction modes. The operation principles of various modes, the voltage characteristics, the boundary of the coupled inductor, and the proposed converter's control method are discussed in depth to provide detailed theoretical guidance to designers. Then, the simulation and experiment results of a laboratory prototype with an 18 V PV source, 24 V battery pack, and 180 V output are presented to validate the feasibility of the theoretical analysis.

키워드

과제정보

This research is supported by the National Natural Science Foundation of China (52077199).

참고문헌

  1. Lu, Y., Sun, K., Wu, H., Dong, X., Xing, Y.: A three-port converter based distributed DC grid connected PV system with autonomous output voltage sharing control. IEEE Trans. Power Electron. 34(1), 325-339 (2019) https://doi.org/10.1109/TPEL.2018.2822726
  2. Zou, S., Lu, J., Khaligh, A.: Modelling and control of a triple-active-bridge converter. IET Power Electron. 13(11), 961-969 (2020) https://doi.org/10.1049/iet-pel.2019.0920
  3. Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC-DC converters. IEEE Trans. Power Electron. 35(11), 11783-11800 (2020) https://doi.org/10.1109/tpel.2020.2985287
  4. Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297-3307 (2013) https://doi.org/10.1109/TPEL.2012.2221746
  5. Ding, S., Wu, H., Xing, Y., Fang, Y., Ma, X.: Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 1089-1094 (2013)
  6. Faraji, R., Ding, L., Esteki, M., Mazloum, N., Khajehoddin, S.A.: Soft-switched single inductor single stage multiport bidirectional power converter for hybrid energy systems. IEEE Trans. Power Electron. 36(10), 11298-11315 (2021) https://doi.org/10.1109/TPEL.2021.3074378
  7. Faraji, R., Ding, L., Rahimi, T., Farzanehfard, H., Hafezi, H., Maghsoudi, M.: Efficient multi-port bidirectional converter with soft-switching capability for electric vehicle applications. IEEE Access. 9, 107079-107094 (2021) https://doi.org/10.1109/ACCESS.2021.3097750
  8. Faraji, R., Ding, L., Rahimi, T., Kheshti, M., Islam, M.D.R.: Soft-switched three-port DC-DC converter with simple auxiliary circuit. IEEE Access. 9, 66738-66750 (2021) https://doi.org/10.1109/ACCESS.2021.3076183
  9. Honarjoo, B., Madani, S., Niroomand, M., Adib, E.: Non-isolated high step-up three-port converter with single magnetic element for photovoltaic systems. IET Power Electron. 11(13), 151-2160 (2018)
  10. Saadatizadeh, Z., Heris, P.C., Babaei, E., Sabahi, M.: A new nonisolated single-input three-output high voltage gain converter with low voltage stresses on switches and diodes. IEEE Trans. Ind. Electron. 66(6), 4308-4318 (2019) https://doi.org/10.1109/tie.2018.2864710
  11. Chien, L.J., Chen, C.C., Chen, J.F., Hsieh, Y.P.: Novel three-port converter with high-voltage gain. IEEE Trans. Power Electron. 29(9), 4693-4703 (2014) https://doi.org/10.1109/TPEL.2013.2285477
  12. Liang, T., Liao, K., Chen, K., Chen, S.: Three-port converter with single coupled inductor for high step-up applications. IEEE Trans. Power Electron. 37(8), 9840-9849 (2022) https://doi.org/10.1109/TPEL.2022.3153040
  13. Mirzaee, A., Moghani, J.S.: Coupled inductor-based high voltage gain DC-DC converter for renewable energy applications. IEEE Trans. Power Electron. 35(7), 7045-7057 (2020) https://doi.org/10.1109/tpel.2019.2956098
  14. Liu, H., Wang, L., Ji, Y., Li, F.: A novel reversal coupled inductor high-conversion-ratio bidirectional DC-DC converter. IEEE Trans. Power Electron. 33(6), 4968-4979 (2018) https://doi.org/10.1109/tpel.2017.2725358
  15. Tarzamni, H., Sabahi, M., Rahimpour, S., Lehtonen, M., Dehghanian, P.: Operation and design consideration of an ultrahigh step-Up DC-DC converter featuring high power density. IEEE J. Emerg. Sel. Topics Power Electron. 9(5), 6113-6123 (2021) https://doi.org/10.1109/JESTPE.2021.3072957
  16. Liu, Y., Dou, Y., Du, M., Wei, K., Gerard, H., Andersen, M.A.E., Ouyang, Z.: High frequency wide output range boost-flyback converter with zero voltage switching. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). 1-6 (2018)
  17. Ding, X., Yu D., Song, Y., Xue, B.: Integrated switched coupled-inductor boost-flyback converter. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). 211-216 (2017)
  18. Muoz, J.G., Angulo, F., Angulo-Garcia, D.: Designing a hysteresis band in a boost flyback converter. Mech. Syst. Signal Process. 147, 107080 (2021)
  19. Chen, Z., Zhou, Q., Xu, J.: Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current. IET Power Electron. 8(2), 213-220 (2015) https://doi.org/10.1049/iet-pel.2014.0066
  20. Kim, D.H., Jang, J.H., Park, J.H., Kim, J.W.: Single-ended high-efficiency step-up converter using the isolated switched-capacitor cell. J. Power Electron. 13(5), 766-778 (2013) https://doi.org/10.6113/JPE.2013.13.5.766
  21. Gao, M., Yu, W., Wang, S., Shi, J.: Synthesis of multi-port converters based on series/parallel input pulsating cells and output pulsating cells. J. Power Electron. (2022). https://doi.org/10.1007/s43236-022-00480-4
  22. Ning, P., Yuan, T., Kang, Y., Han, C., Li, L.: Review of Si IGBT and SiC MOSFET based on hybrid switch. Chin. J. Electr. Eng. 5(3), 20-29 (2019) https://doi.org/10.23919/cjee.2019.000017
  23. Luo, P., Guo, L., Xu, J., Li, X.: Analysis and design of a new nonisolated three-port converter with high voltage gain for renewable energy applications. IEEE Access. 9(1), 115909-115921 (2021) https://doi.org/10.1109/ACCESS.2021.3106058
  24. Zhuo, G., Tian, Q., Wang, L.: Soft-switching high gain three-port converter based on coupled inductor for renewable energy system applications. IEEE Trans. Ind. Electron. 69(2), 1521-1536 (2022) https://doi.org/10.1109/TIE.2021.3060614
  25. Cheraghi, R., Adib, E., Golsorkhi, M.S.: A nonisolated high step-up three-port soft-switched converter with minimum switches. IEEE Trans. Ind. Electron. 68(10), 9358-9365 (2021) https://doi.org/10.1109/TIE.2020.3026306
  26. Saadatizadeh, Z., Babaei, E., Blaabjerg, F., Cecati, C.: Three-port high step-up and high step-down DC-DC converter with zero input current ripple. IEEE Trans. Power Electron. 36(2), 1804-1813 (2021) https://doi.org/10.1109/tpel.2020.3007959