DOI QR코드

DOI QR Code

리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery

  • 전민규 (한국기계연구원) ;
  • 이은송 (한국기계연구원 친환경에너지변환연구부) ;
  • 윤홍식 (한국기계연구원 친환경에너지변환연구부) ;
  • 길상인 (한국기계연구원 친환경에너지변환연구부) ;
  • 박현욱 (한국기계연구원 친환경에너지변환연구부)
  • Jeon, Min-Kyu (Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • Lee, Eun-Song (Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • Yoon, Hong-Sik (Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • Keel, Sang-In (Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • Park, Hyun-Wook (Eco-Friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
  • 투고 : 2022.11.19
  • 심사 : 2022.12.05
  • 발행 : 2022.12.31

초록

This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

키워드

참고문헌

  1. D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, Appl. Sci., 9, p. 2483, (2019). https://doi.org/10.3390/app9122483
  2. L. Kong, C. Li, J. Jiang, M.G. Pecht, Energies, 11, p. 2191, (2018). https://doi.org/10.3390/en11092191
  3. Liu, X., Ren, D., Hsu, H., Feng, X., Xu, G. L., Zhuang, M., ... & Ouyang, M.. Joule, 2(10), 2047-2064, (2018). https://doi.org/10.1016/j.joule.2018.06.015
  4. Y. Ren, Z. Huang, H. Miao, Y. Di, D. Jiang, K. Zeng, B. Liu, X. Wang, Fuel, 87, pp. 2691-2697, (2008). https://doi.org/10.1016/j.fuel.2008.02.017
  5. Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, Prog. Energy Combust. Sci., 73, pp. 95-131, (2019). https://doi.org/10.1016/j.pecs.2019.03.002
  6. G.G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq, J.-.P. Bertrand, G. Marlair, Phys. Chem. Chem. Phys., 15, pp. 9145-9155, (2013). https://doi.org/10.1039/c3cp51315g
  7. S.J. Harris, A. Timmons, W.J. Pitz, , J. Power Sources., 193, pp. 855-858, (2009). https://doi.org/10.1016/j.jpowsour.2009.04.030
  8. Takahashi, Shintaro, et al. Combustion and Flame, 238, 111878, (2022). https://doi.org/10.1016/j.combustflame.2021.111878
  9. Golubkov, A. W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., ... & Hacker, V., Rsc Advances, 4(7), 3633-3642, (2014). https://doi.org/10.1039/C3RA45748F
  10. Feng, X., Zheng, S., Ren, D., He, X., Wang, L., Cui, H., ... & Ouyang, M., Applied energy, 246, 53-64, (2019). https://doi.org/10.1016/j.apenergy.2019.04.009
  11. Jeon, M., Lee, E., Park, H., Yoon, H., & Keel, S. Batteries, 8(10), 196, (2022). https://doi.org/10.3390/batteries8100196
  12. C.S. Cheung, R. Zhu, Z. Huang, Sci. Total Environ., 409, pp. 523-529, (2011). https://doi.org/10.1016/j.scitotenv.2010.10.027
  13. M. Kozak, J. Merkisz, P. Bielaczyc, A. Szczotka, SAE Tech. Pap., pp. 2009-2696, (2009).
  14. Kanayama, K., Takahashi, S., Morikura, S., Nakamura, H., Tezuka, T., & Maruta, K., Combustion and Flame, 237, 111810, (2022). https://doi.org/10.1016/j.combustflame.2021.111810
  15. Alexandrino, Katiuska, Maria U. Alzueta, and Henry J. Curran., Combustion and Flame, 188, 212-226, (2018). https://doi.org/10.1016/j.combustflame.2017.10.001
  16. Zhang, G. D., Liu, H., Xia, X. X., Zhang, W. G., & Fang, J. H., Journal of Automobile Engineering, 219(7), 897-903, (2005). https://doi.org/10.1243/095440705X28358
  17. Cheung, C. S., Lee, S. C., Kwok, A., & Tung, C. W., HKIE Transactions, 12(3), 15-20, (2005). https://doi.org/10.1080/1023697X.2005.10668007
  18. Cheung, C. S., Zhu, R., & Huang, Z. Science of the Total Environment, 409(3), 523-529, (2011). https://doi.org/10.1016/j.scitotenv.2010.10.027
  19. A. Sinha, M. Thomson, Combust. Flame, 136, pp. 548-556, (2004). https://doi.org/10.1016/j.combustflame.2003.12.011
  20. P.A. Glaude, W.J. Pitz, M.J. Thomson, Proc. Combust. Inst., 30, pp. 1111-1118, (2005). https://doi.org/10.1016/j.proci.2004.08.096
  21. S. Peukert, R. Sivaramakrishnan, J. Michael, J. Phys. Chem. A, 117, pp. 3718-3728, (2013). https://doi.org/10.1021/jp312643k
  22. S. Peukert, R. Sivaramakrishnan, J. Michael, 8th U. S. National Combustion Meeting, Paper 070RK-0007, (2013).
  23. M.E. Bardin, E.V. Ivanov, E.J. Nilsson, V.A. Vinokurov, A.A. Konnov, Energy Fuels, 27, pp. 5513-5517, (2013). https://doi.org/10.1021/ef401108a
  24. E. Hu, Y. Chen, Z. Zhang, L. Pan, Q. Li, Y. Cheng, Z. Huang, Fuel, 140, pp. 626-632, (2015). https://doi.org/10.1016/j.fuel.2014.10.013
  25. Takahashi, S., Kanayama, K., Morikura, S., Nakamura, H., Tezuka, T., & Maruta, K., Combustion and Flame, 238, 111878, (2022). https://doi.org/10.1016/j.combustflame.2021.111878
  26. Kee, R., Ruply, F., & Miller, J., Inc., San Diego, CA, 10, 5-0055585, (2008).
  27. Jeon, M. K., & Kim, N. I., Mathematical Modelling of Natural Phenomena, 13(6), 56, (2018). https://doi.org/10.1051/mmnp/2018052
  28. Tang, C. W., Wang, C. B., & Chien, S. H., Thermochimica Acta, 473(1-2), 68-73, (2008). https://doi.org/10.1016/j.tca.2008.04.015
  29. Sun, W., Yang, B., Hansen, N., Westbrook, C. K., Zhang, F., Wang, G., ... & Law, C. K., Combustion and Flame, 164, 224-238, (2016). https://doi.org/10.1016/j.combustflame.2015.11.019