DOI QR코드

DOI QR Code

Self-supervised Meta-learning for the Application of Federated Learning on the Medical Domain

연합학습의 의료분야 적용을 위한 자기지도 메타러닝

  • Kong, Heesan (Department of Computer science and Engineering, Sunkyunkwan University) ;
  • Kim, Kwangsu (Department of Computer science and Engineering, Sunkyunkwan University)
  • 공희산 (성균관대학교 소프트웨어학과) ;
  • 김광수 (성균관대학교 소프트웨어학과)
  • Received : 2022.10.06
  • Accepted : 2022.10.24
  • Published : 2022.12.31

Abstract

Medical AI, which has lately made significant advances, is playing a vital role, such as assisting clinicians with diagnosis and decision-making. The field of chest X-rays, in particular, is attracting a lot of attention since it is important for accessibility and identification of chest diseases, as well as the current COVID-19 pandemic. However, despite the vast amount of data, there remains a limit to developing an effective AI model due to a lack of labeled data. A research that used federated learning on chest X-ray data to lessen this difficulty has emerged, although it still has the following limitations. 1) It does not consider the problems that may occur in the Non-IID environment. 2) Even in the federated learning environment, there is still a shortage of labeled data of clients. We propose a method to solve the above problems by using the self-supervised learning model as a global model of federated learning. To that aim, we investigate a self-supervised learning methods suited for federated learning using chest X-ray data and demonstrate the benefits of adopting the self-supervised learning model for federated learning.

최근 많은 발전을 이룬 의료 인공지능은 의사가 진단과 결정을 내리는 데 도움을 주는 등 중요한 역할을 수행하고 있다. 특히, 흉부 엑스레이 분야는 접근성 및 흉부질환 탐지에 유용함과 최근 COVID-19 상황이 도래함에 따라 많은 관심을 받고 있다. 그러나, 데이터의 수가 많음에도 레이블이 있는 데이터의 수가 부족하므로 효과적인 인공지능 모델을 만드는데 한계가 있다. 이러한 문제를 완화하는 방안으로 연합학습을 흉부 엑스레이 데이터에 적용한 연구가 등장했지만, 여전히 다음과 같은 문제를 내포하고 있다. 1) Non-IID 환경에서 발생할 수 있는 문제를 고려하지 않았다. 2) 연합학습 환경에서도 여전히 클라이언트의 레이블이 있는 데이터가 부족하다. 우리는 자기지도학습 모델을 연합학습의 Global 모델로 사용함으로써 위와 같은 문제를 해결하는 방법을 제안한다. 이를 위해 흉부 엑스레이 데이터를 사용한 연합학습에 알맞은 자기지도학습 방법론을 실험적으로 탐색하며, 자기지도학습 모델을 연합학습에 사용함으로써 얻을 수 있는 장점을 검증한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신산업진흥원의 지원을 받아 수행된 헬스케어 AI 융합 연구개발 사업임(No.S0254-22-1006)

References

  1. 공희산, 박재훈, 김광수. (2021). 의료 데이터의 자기지도학습 적용을 위한 pretext task 분석. 2021 한국정보통신학회 춘계학술대회. 38-40.
  2. Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning approaches for multi-label chest X-ray classification. Scientific reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-37186-2
  3. Banerjee, S., Misra, R., Prasad, M., Elmroth, E., & Bhuyan, M. H. (2020, November). Multi-diseases classification from chest-X-ray: A federated deep learning approach. In Australasian Joint Conference on Artificial Intelligence (pp. 3-15). Springer, Cham.
  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural Information Processing Systems, 33, 9912-9924.
  5. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.
  6. Chen, X., Fan, H., Girshick, R., & He, K. (2020). Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297.
  7. Doersch, C., Gupta, A., & Efros, A. A. (2015). Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE international conference on computer vision (pp. 1422-1430).
  8. Grill, J. B., Strub, F., Altche, F., Tallec, C., Richemond, P., Buchatskaya, E., ... & Valko, M. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33, 21271-21284.
  9. Guan, Q., Huang, Y., Luo, Y., Liu, P., Xu, M., & Yang, Y. (2021). Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images. IEEE Transactions on Image Processing, 30, 2476-2487. https://doi.org/10.1109/TIP.2021.3052711
  10. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  11. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
  12. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., & Ciurea-Ilcus, S. A large chest radiograph dataset with uncertainty labels and expert comparison. In Proc AAAI Conf Artif Intell (No. 33, p. 590). CheXPert. https://stanfordmlgroup.github.io/competitions/chexpert/
  13. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1-2), 1-210. https://doi.org/10.1561/2200000083
  14. Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., & Suresh, A. T. (2020, November). Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning (pp. 5132-5143). PMLR.
  15. Komodakis, N., & Gidaris, S. (2018, April). Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations (ICLR).
  16. Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2, 429-450.
  17. Mangal, A., Kalia, S., Rajgopal, H., Rangarajan, K., Namboodiri, V., Banerjee, S., & Arora, C. (2020). CovidAID: COVID-19 detection using chest X-ray. arXiv preprint arXiv:2004.09803.
  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.
  19. Misra, I., & Maaten, L. V. D. (2020). Self-supervised learning of pretext-invariant representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6707-6717).
  20. Noroozi, M., & Favaro, P. (2016, October). Unsupervised learning of visual representations by solving jigsaw puzzles. In European conference on computer vision (pp. 69-84). Springer, Cham.
  21. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.
  22. Wang, J., Liu, Q., Liang, H., Joshi, G., & Poor, H. V. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. Advances in neural information processing systems, 33, 7611-7623.
  23. Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017. NIH Chest X-ray14, https://www.kaggle.com/datasets/nih-chest-xrays/data
  24. Yan, B., Wang, J., Cheng, J., Zhou, Y., Zhang, Y., Yang, Y., ... & Liu, B. (2021, July). Experiments of federated learning for COVID-19 chest X-ray images. In International Conference on Artificial Intelligence and Security (pp. 41-53). Springer, Cham.
  25. Zbontar, J., Jing, L., Misra, I., LeCun, Y., & Deny, S. (2021, July). Barlow twins: Self-supervised learning via redundancy reduction. In International Conference on Machine Learning (pp. 12310-12320). PMLR.