DOI QR코드

DOI QR Code

구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures

  • 투고 : 2022.09.16
  • 심사 : 2022.11.07
  • 발행 : 2022.12.31

초록

이 연구는 구조물 내진보강 장치의 하나인 마찰댐퍼에 관한 것으로, 내부 마찰재를 복합재료의 일종인 초고분자량 폴리에틸렌으로 대체하여 댐퍼를 개발하였다. 또한 마찰력이 발생하는 내부 구조를 여러 층으로 적층하는 다중 마찰방식을 적용하였다. 개발된 다중 마찰댐퍼의 성능 검증을 위해서 재료에 대한 기초 물성과 마모 특성, 디스크 스프링에 대한 특성 분석 시험을 수행하였다. 마모시험 시험결과, UHMWPE의 질량 감소율은 0.003%로 복합재료 기반의 마찰재 중에서 가장 우수한 성능을 보였다. 디스크 스프링은 유한요소해석과 시험결과로부터 설계기초자료를 확보하였다. 또한 개발된 다중 마찰댐퍼의 품질 안정성을 확인하기 위해 토크값에 따른 마찰력 변화와 감쇠장치에 대한 지진하중 시험을 수행하였다. 품질성능 시험결과, 토크 값 조절에 따라 선형적인 마찰력 변화를 보였으며, 지진하중 시험 결과, 마찰댐퍼의 허용오차는 설계기준에서 요구하는 15% 미만으로 나타나 내진보강 장치로서의 요구조건을 만족하는 것으로 나타났다.

This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

키워드

과제정보

본 연구는 국토교통부 국토교통기술사업화지원사업(과제번호: 22TBIP-C160672-02)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. AASHTO. (2017), AASHTO LRFD Bridge Construction Specifications, 8th Edition.
  2. Armali, M., Damerji, H., Hallal, J., and Fakih, M. (2019), Effectiveness of friction dampers on the seismic behavior of high rise building VS shear wall system, Engineering Reports, Wiley, 1-14.
  3. Cho, S. G., Park, K. W., and Yi, S. T. (2017), Performance analysis of friction damper considering the change of the vertical force, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 59-66. https://doi.org/10.11112/JKSMI.2017.21.1.059
  4. Choi, S. Y. (2013), Seismic retrofit of existing RC structure using hysteretic dampers, Journal of the Computational Structural Engineering Institute of Korea, 26(2), 37-42.
  5. Ghamar, A., and Jeong, S. H. (2021), Development of a shear yielding steel damper for concentrically braced frames, Journal of the Computational Structural Engineering Institute of Korea, 34(6), 437-443. https://doi.org/10.7734/COSEIK.2021.34.6.437
  6. Kim, D. H. (2013), Experimental study on the seismic performance of hybrid buckling-restrained braces, Journal of the Korean Society of Hazard Mitigation, 13(4), 23-29. https://doi.org/10.9798/KOSHAM.2013.13.4.023
  7. Lee, H. H. (2017), Capacity evaluation of steel damper attached to outside of frame, Journal of the Korean Recycled Construction Resources Institute, 5(4), 382-388. https://doi.org/10.14190/JRCR.2017.5.4.382
  8. Lee, H, H. (2018), Hysteretic behavior of steel damper for the lateral displacement control, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(3), 46-52. https://doi.org/10.11112/JKSMI.2018.22.3.046
  9. MOLIT. (2019), Seismic Building Design Code.
  10. Mualla I. H., and Belev, B. (2002), Performance of steel frames with a new friction damper device under earthquake excitation, Engineering Structures, 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X
  11. Nuruzzaman, D. M., and Chowdhury, M. A. (2012), Friction and wear of polymer and composites, Composites and Their Properties, 299-330.
  12. Pall, A. S., and Marsh, C. (1982), Response of friction damped braced frames, Journal of Structural Division, ASCE, 108(6), 1313-1323. https://doi.org/10.1061/JSDEAG.0005968
  13. Park, E. S., and Choi, J. H. (2012), An experimental study on effect of installed tension for shear type friction damper with disk spring washer, Journal of the Architectural Institute of Korea Structure & Construction, 28(8), 21-32. https://doi.org/10.5659/JAIK_SC.2012.28.8.21
  14. Park, J. Y., Han, S. W., Moon, K. H., Lee, K. S., and Kim, H. J. (2013), Experimental study the on hysteretic characteristics of rotational friction energy dissipative devices, Jorunal of the Earthquake Engineering Society of Korea, 17(5), 227-235. https://doi.org/10.5000/EESK.2013.17.5.227
  15. Sahin, Y., Pauw, J. D., Sukumaran, J., and Baets, P. (2015), Sliding friction and wear of polyoxymethlyene polymer, Mechanical Engineering Letters, 12, 90-100.
  16. Shahbazi, B., and Moaddab, E. (2021), A new hybrid friction damper (HFD) for dual-level performance of steel structures, International Journal of Steel Structures, 21(4), 1332-1345. https://doi.org/10.1007/s13296-021-00507-9
  17. Unal, H., Mimaroglu, A., Kadioglu, U., and Ekiz, H. (2004), Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions, Materials and Design, 25(3), 239-245. https://doi.org/10.1016/j.matdes.2003.10.009
  18. Yoon, I. R., Kim, C. H., Do, C. G., and Jang, W. (2017), A study on the structural performance of steel plate damper, Journal of Korean Society of Steel Construction, 29(2), 159-167. https://doi.org/10.7781/KJOSS.2017.29.2.159
  19. Yoon, J. R. (1987), Friction and wear characteristics of polymer materials, Proceedings of the Korean Fiber Society Conference, 23-25.
  20. Zaribaf, F. P. (2018), Medical-grade ultra-high molecular weight polyethylene: Past, current and future, Materials Science and Technology, 34(16), 1940-1953. https://doi.org/10.1080/02670836.2018.1469455