DOI QR코드

DOI QR Code

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection

하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향

  • 이기원 (부산대학교 건축공학과) ;
  • 오상훈 (부산대학교 건축공학과)
  • Received : 2022.10.24
  • Accepted : 2022.10.27
  • Published : 2022.12.31

Abstract

Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.

취성파괴는 구조물의 파괴거동 중 하나로서 구조재료의 내진성능에 큰 영향을 미친다. 하중속도는 취성파괴의 주요 발생원인 중 하나로 작용하며, 특히 지진과 같은 상황에서 건축물에 높은 하중속도가 작용하게 된다. 하지만 현재 국내·외 강구조 보-기둥 접합부의 내진성능평가는 대부분 정적실험을 통해 수행되고 있다. 따라서 기존 내진성능평가에서는 지진 시의 높은 하중속도에 의한 재료 인성 저하 및 최대변형률 감소 등의 요소에 따른 취성파괴가 충분히 고려되지 않았을 가능성이 존재한다. 본 연구에서는 기존 실험방법에 따른 낮은 하중속도에서의 정적실험과 진동대를 이용한 높은 하중속도에서의 동적실험을 각각 실시한다. 각 실험결과에 따른 파괴형상 및 구조성능 등을 비교·분석하고 최종적으로 하중속도의 크기가 접합부의 내진성능에 미치는 영향을 분석한다.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('20017750').

References

  1. Lee, K. W. (2022), Seismic performance evaluation of steel connection and moment frame considering load velocity, master dissertation, Master dissertation, Department of Architectural Engineering The Graduate School Pusan National University.
  2. SAC Joint Venture (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA-350, Chapter 3 Connection Qualification.
  3. Bomel, L. (1999), The behaviour of carbon steels at high strain rates and strain limits, Offshore Technology Report - OTO 1999018, Health and Safety Executive.
  4. Yu, H., Guo, Y., and Lai, X. (2009), Rate-dependent behavior and constitutive model of DP600 steel at strain rate from 10-4 to 103 s-1, Materials and Design, 30(7), 2501-25 https://doi.org/10.1016/j.matdes.2008.10.001
  5. Kim, K. H , Lim, J. H., and Lim, Y. M. (2008), Study on rate dependent fracture behavior of structures; application to brittle using molecular dynamics, Journal of the Korean Society of Civil Engineers Volume, 28(4A), 529-536
  6. Korea Construction Standards Center. (2019), Building Structure Standards KDS 41.
  7. Korean Society of Steel Construction. (2018), KS New Steel Structure Design, Gumi Library (written).
  8. Oh, S. H (1998) 柔剛混合形式接合部から成るエネルギ-分散型多層骨組の耐震設計, PhD dissertation, The Graduate School of Tokyo University.
  9. Kato, B., Akiyama, H., and Yamanouchi, Y. (1973), Predictable properties of material under incremental cyclic loading, IABSE, Preliminary Publication Lisbon, pp.119-124.