Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1F1A1074696).
References
- A red light for modern mental health and stress management are essential [Internet]. Available:http://www.medical-tribune.co.kr/news/articleView.html?idxno=100431.
- J. Q. Yuki, Md. M. Q. Sakib, Z. Zamal, S. H. Efel, and M. A. Khan, "Detecting Depression from Human Conversations," in Proceedings of the 8th International Conference on Computer and Communications Management (ICCCM'20), New York: NY, USA, pp. 14-18, 2020.
- A story about our brains [Internet]. Available: http://scienceon.hani.co.kr/436471.
- Wellness conversation dataset [Internet]. Available: https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-006.
- Subject-specific text Daily conversation [Internet]. Available: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=543.
- Korean Chatbot dataset [Internet]. Available: https://github.com/songys/Chatbot_data.
- H. Chin, G. Baek, C. Cha, J. Choi, H. Im, and M. Cha, "A study on the categories and characteristics of depressive moods in chatbot data," in Proceedings of the Korea Information Processing Society Conference, Yeosu, Korea, pp. 993-996, 2021.
- S. J. Sohn, M. S. Park, J. E. Park, and J. H. Sohn, "Korean Emotion Vocabulary: Extraction and Categorization of Feeling Words," Science of Emotion and Sensibility, vol. 15, no. 1, pp. 105-120, Mar. 2012.
- S. H. An and O. R. Jeong "A Study on the Psychological Counseling AI Chatbot System based on Sentiment Analysis," Journal of Information Technology Services, vol. 20, no. 3, pp. 75-86, Jun. 2021. https://doi.org/10.9716/KITS.2021.20.3.075
- Y. G. Song, K. M. Jung, and H. Lee, "A BERGPT-chatbot for mitigating negative emotions," Journal of the Korea Society of Computer and Information, vol. 26, no. 12, pp. 53-59, Dec. 2021. https://doi.org/10.9708/JKSCI.2021.26.12.053
- A. Sharma, A. S. Miner, D. C. Atkins, and T. Althoff, "A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support," in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, pp. 5263-5276, 2020.
- J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding," in Proceedings of NAACL-HLT 2019, Minneapolis: MN, USA, pp. 4171-4186, 2018.
- About BERT [Internet]. Available: https://happy-obok.tistory.com/23.
- K. Clark, M. T. Luong, Q. V. Le, and C. D. Manning, "ELECTRA: Pre-training text encoders as discriminators rather than generators," arXiv preprint arXiv:2003.10555, Mar. 2020.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks," Communications of the ACM, vol. 63, no. 11, pp. 139-144, Oct. 2020. https://doi.org/10.1145/3422622
- I. Kandel and M. Castelli, "The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset," ICT Express, vol. 6, no. 4, pp. 312-315, Dec. 2020. https://doi.org/10.1016/j.icte.2020.04.010