Acknowledgement
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00952, Development of 5G Edge Security Technology for Ensuring 5G+ Service Stability and Availability).
References
- Raghunath, Bane Raman, and Shivsharan Nitin Mahadeo. "Network intrusion detection system (NIDS)." 2008 First International Conference on Emerging Trends in Engineering and Technology. IEEE, 2008. DOI: 10.1109/ICETET.2008.252.
- Buczak, Anna L., and Erhan Guven. "A survey of data mining and machine learning methods for cyber security intrusion detection." IEEE Communications surveys & tutorials 18.2 (2015): 1153-1176. DOI: 10.1109/COMST.2015.2494502.
- Zavrak, Sultan, and Murat Iskefiyeli. "Anomaly-based intrusion detection from network flow features using variational autoencoder." IEEE Access 8 (2020): 108346-108358. DOI: 10.1109/ACCESS.2020.3001350.
- McHugh, John, Alan Christie, and Julia Allen. "Defending yourself: The role of intrusion detection systems." IEEE software 17.5 (2000): 42-51. DOI: 10.1109/52.877859.
- Song, Youngrok, Sangwon Hyun, and Yun-Gyung Cheong. "Analysis of autoencoders for network intrusion detection." Sensors 21.13 (2021): 4294. DOI: 10.3390/s21134294.
- Kumar, Sailesh. "Survey of current network intrusion detection techniques." Washington Univ. in St. Louis (2007): 1-18.
- Wu, Handong, Stephen Schwab, and Robert Lom Peckham. "Signature based network intrusion detection system and method." U.S. Patent No. 7,424,744. 9 Sep. 2008.
- Zhang, Jiong, and Mohammad Zulkernine. "Anomaly based network intrusion detection with unsupervised outlier detection." 2006 IEEE International Conference on Communications. Vol. 5. IEEE, 2006. DOI: 10.1109/ICC.2006.255127.
- Ahmad, Zeeshan, et al. "Network intrusion detection system: A systematic study of machine learning and deep learning approaches." Transactions on Emerging Telecommunications Technologies 32.1 (2021): e4150. DOI: 10.1002/ett.4150.
- Chkirbene, Zina, et al. "TIDCS: A dynamic intrusion detection and classification system based feature selection." IEEE Access 8 (2020): 95864-95877. DOI: 10.1109/ACCESS.2020.2994931.
- Vinayakumar, Ravi, et al. "Deep learning approach for intelligent intrusion detection system." Ieee Access 7 (2019): 41525-41550. DOI: 10.1109/ACCESS.2019.2895334.
- Panda, Mrutyunjaya, et al. "Network intrusion detection system: A machine learning approach." Intelligent Decision Technologies 5.4 (2011): 347-356. DOI: 10.3233/IDT-2011-0117.
- Althubiti, Sara A., Eric Marcell Jones, and Kaushik Roy. "LSTM for anomaly-based network intrusion detection." 2018 28th International telecommunication networks and applications conference (ITNAC). IEEE, 2018. DOI: 10.1109/ATNAC.2018.8615300.
- Jo, Wooyeon, et al. "Packet Preprocessing in CNN-based network intrusion detection system." Electronics 9.7 (2020): 1151. DOI: 10.3390/electronics9071151.
- Goodfellow, Ian, et al. "Generative adversarial networks." Communications of the ACM 63.11 (2020): 139-144. DOI: 10.1145/3422622.
- Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. DOI: 10.1109/cvpr.2019.00453.
- Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE international conference on computer vision. 2017. DOI: 10.1109/ICCV.2017.244.
- Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International conference on information processing in medical imaging. Springer, Cham, 2017. DOI: 10.1007/978-3-319-59050-9_12.
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). DOI: 10.48550/arXiv.1312.6114.
- Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." Proceedings of the 25th international conference on Machine learning. 2008.} DOI: 10.1145/1390156.1390294.
- Aygun, R. Can, and A. Gokhan Yavuz. "Network anomaly detection with stochastically improved autoencoder based models." 2017 IEEE 4th international conference on cyber security and cloud computing (CSCloud). IEEE, 2017. DOI: 10.1109/CSCloud.2017.39.
- Mirsky, Yisroel, et al. "Kitsune: an ensemble of autoencoders for online network intrusion detection." arXiv preprint arXiv:1802.09089 (2018). DOI: 10.48550/arXiv.1802.09089.
- Lee, Jonghoon, et al. "Cyber threat detection based on artificial neural networks using event profiles." IEEE Access 7 (2019): 165607-165626. DOI: 10.1109/ACCESS.2019.2953095.
- Chen, Z., Peng, Z., Zou, X., Sun, H. (2022). Deep Learning Based Anomaly Detection for Muti-dimensional Time Series: A Survey. In: Lu, W., Zhang, Y., Wen, W., Yan, H., Li, C. (eds) Cyber Security. CNCERT 2021. Communications in Computer and Information Science, vol 1506. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-9229-1_5