DOI QR코드

DOI QR Code

H2O2 Generating Ability and Multi-Drug Resistance of Lactic Acid Bacteria Required for Long-Term Inpatient Treatment with Antibiotic Resistance

  • Yuk, Young Sam (Graduate School of Business (Health), Dankook University)
  • Received : 2022.11.20
  • Accepted : 2022.11.26
  • Published : 2022.12.31

Abstract

Purpose: In our study, in order to find lactic acid bacteria (LAB) with multi-drug resistance to antibiotics, we isolated 140 strains from 15 types of kimchi commercially available in Korea and 20 types of Kimchi made at home from January to December in 2016, and investigated their H2O2 generating ability and multi-drug resistance to antibiotics. Methods: In order to observe the H2O2 generation ability of LAB, we performed the experiment with methods such as Rabe, Hillier, and Kang. To test the antibacterial susceptibility of LAB, we used the disc agar diffusion method using MRS agar (Difco, USA) according to the CLSI and WHO test methods. There are 18 types of antibiotic discs used. Results: Out of the total numbers of 140 strains, 6 strains of Ent. Faecium, 25 strains of L. plantarum, 1 strain of L. rhamnosus, 3 strains of L. sakei, 1 strain of L. acidophilus, 1 strains St. thermophilus, and 7 of unidentified strains generated H2O2. The antibiotic susceptibility of Ent. Faecium indicated SXT, OX, NA, and E; and the antibiotic susceptibility of L. plantarum indicated NA; and the antibiotic susceptibility of St. thermophilus indicated NA, CC, RA, CTT, CM, and P ; and the antibiotic susceptibility of L. rhamnosus indicated SXT, VA, NA and CTT; and the antibiotic susceptibility of 6 strains of L. sakei indicated SXT, OX, NOR, NA, CTT and CIP, all indicating antibiotic resistance. In the case of multi-drug resistance to antibiotics for 53 strains of L. antarum, 8-drug resistance was the most common with 25 strains, followed by 7-drug-resistant strains with 18 strains, 9-drug-resistant strains with 4 strains, 6-drug-resistant strains with 3 strains, 5-drug-resistant strains with 2 strains, and 17-drug-resistant strains with 1 strain. In the case of multi-drug resistance to antibiotics for Ent. Faecium 27 strains, 9-drug resistance was most commonly identified as 9 strains, 8-drug resistance was identified as 6 strains, 7- and 11 drug resistances were identified as 4 strains each, and 4- and 6-drug resistances were identified as 1 strain each. Conclusion: Ent. Faecium, L. plantarum, L. rhamnosus, L. sakei, and St. thermophilus, shown to have anantibacterial activity in previous studies on LAB and shown to have and H2O2 generating ability, antibiotic resistance and multi-drug resistance in this study, are expected to be able to play an excellent role for long-term inpatients to use as an alternative to antibiotics and to cope with emerging antibiotic resistance.

Keywords

Acknowledgement

Conflict of interest: The authors declare that there are no conflicts of interest

References

  1. K. Dong, J. Pu, J. Yang, G. Zhou, X. Ji, Z. Kang, J. Li, M. Yuan, X. Ning, Z. Zhang, X. Ma, Y. Cheng, H. Li, Q. Ma, L. Zhao, W. Lei, B. Sun and J. Xu, "The species-level microbiota of healthy eyes revealed by the integration of metataxonomics with culturomics and genome analysis", Front Microbiol 13, 950591, 2022 DOI : https://doi.org/10.3389/fmicb.2022.950591
  2. E. Mansson, S. Tevell, A. Nilsdotter-Augustinsson, T. B. Johannesen, M. Sundqvist, M. Stegger and B. Soderquist, "Methicillin-Resistant Staphylococcus epidermidis Lineages in the Nasal and Skin Microbiota of Patients Planned for Arthroplasty Surgery", Microorganisms 9, no. 2, 2021. DOI : https://doi.org/10.3390/microorganisms9020265
  3. O. Akgul, G. Soyletir and N. Ulger Toprak, "antimicrobial susceptibility of pathogenic gram-positive anaerobic cocci: Data of a university hospital in turkey", Mikrobiyol Bul 54, no. 3, 404-417, 2020 DOI : https://doi.org/10.5578/mb.69556
  4. S. B. Orchanian, J. M. Gauglitz, S. Wandro, K. C. Weldon, M. Doty, K. Stillwell, S. Hansen, L. Jiang, F. Vargas, K. E. Rhee, J. C. Lumeng, P. C. Dorrestein, R. Knight, J. H. Kim, S. J. Song and A. D. Swafford, "Multiomic analyses of nascent preterm infant microbiomes differentiation suggest opportunities for targeted intervention", Adv Biol (Weinh) 6, no. 8, e2101313, 2022 DOI : https://doi.org/10.1002/adbi.202101313
  5. Y. Xu, O. Milburn, T. Beiersdorfer, L. Du, H. Akinbi and D. B. Haslam, "Antibiotic exposure prevents acquisition of beneficial metabolic functions in the preterm infant gut microbiome", Microbiome 10, no. 1, 103, 2022 DOI : https://doi.org/10.1186/s40168-022-01300-4
  6. P. G. Pappas, M. S. Lionakis, M. C. Arendrup, L. Ostrosky-Zeichner and B. J. Kullberg, "Invasive candidiasis", Nat Rev Dis Primers 4, 18026, 2018. DOI : https://doi.org/10.1186/s40168-022-01300-4
  7. C. E, M. MT, A. AG, F. R, G. H, J. H, J. SZ, B. SL, D. S, H. AU, B. D, D. L, P. JS and M. L, "Antimicrobial and inflammatory properties of south african clinical lactobacillus isolates and vaginal probiotics", Scientific reports 9, no. 1, 2019. DOI : https://doi.org/10.1038/s41598-018-38253-4
  8. B. JM, D. E, B. F, B. G, D. C and C. JM, "Efficacy and safety of vaginally administered lyophilized lactobacillus crispatus ip 174178 in the prevention of bacterial vaginosis recurrence", Journal of gynecology obstetrics and human reproduction 47, no. 2, 2018. DOI : https://doi.org/10.1016/j.jogoh.2017.11.005
  9. Y. S. Yuk, Y. k. Lee and G.-Y. Kim, "Antagonistic inhibitory effects of probiotics against pathogenic microorganisms in vitro", Journal of the Korea Academia-Industrial cooperation Society 20, no. 12, 110-116, 2019. DOI : https://doi.org/10.5762/KAIS.2019.20.12.110
  10. J. S. Kim, Y. S. Yuk and G. Y. Kim, "Inhibition effect on pathogenic microbes and antimicrobial resistance of probiotics", Korean Journal of Clinical Laboratory Science 51, no. 3, 294-300, 2019. DOI : https://doi.org/10.15324/kjcls.2019.51.3.294
  11. Y. S. Yuk, Y. K. Lee and G.-Y. Kim, "Antagonistic effects of lactobacillus plantarum on candida albicans in me-180 cervical carcinoma cell culture", Jundishapur Journal of Microbiology 13, no. 11, 2020. DOI : https://doi.org/10.5812/jjm.112449
  12. L. K. Rabe and S. L. Hillier, "Optimization of media for detection of hydrogen peroxide production by lactobacillus species", J Clin Microbiol 41, no. 7, 3260-3264, 2003. DOI : https://doi.org/10.1128/JCM.41.7.3260-3264.2003
  13. D.-K. Kang, H. K. Oh, J.-S. Ham, J. G. Kim, C. H. Yoon, Y. T. Ahn and H. U. Kim, "Identification and characterization of hydrogen peroxide-generating lactobacillus fermentum cs12-1", Asian-Australasian Journal of Animal Sciences 18, no. 1, 90-95, 2005 DOI : https://doi.org/10.5713/ajas.2005.90
  14. R. M. Humphries, J. Ambler, S. L. Mitchell, M. Castanheira, T. Dingle, J. A. Hindler, L. Koeth, K. Sei, D. Hardy, B. Zimmer, S. Butler-Wu, J. D. Bard, B. Brasso, R. Shawar, T. Dingle, R. Humphries, K. Sei, L. Koeth and C. S. Kraft, "Clsi methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests", Journal of Clinical Microbiology 56, no. 4, 2018. DOI : https://doi.org/10.1128/JCM.01934-17
  15. W. H. Organization(WHO), "Manual for the laboratory identification and antimicrobial susceptibility testing of bacterial pathogens of public health importance in the developing world," 2003.
  16. J. Han, D. Chen, S. Li, X. Li and W.-W. Zhou, "Antibiotic susceptibility of potentially probiotic lactobacillus strains", Italian Journal of Food Science 27, no. 3, 282-289, 2015. DOI : https://www.proquest.com/docview/1721465255/96D90DE2397B4A47PQ/1?accountid=10536
  17. R. Coppola, M. Succi, P. Tremonte, A. Reale, G. Salzano and E. Sorrentino, "Antibiotic susceptibility of lactobacillus rhamnosus strains isolated from parmigiano reggiano cheese", Le Lait 85, no. 3, 193-204, 2005. DOI : https://doi.org/10.1051/lait:2005007
  18. A. Pino, A. Vaccalluzzo, C. Caggia, S. Balzaretti, L. Vanella, V. Sorrenti, A. Ronkainen, R. Satokari and C. L. Randazzo, "Lacticaseibacillus rhamnosus CA15 (DSM 33960) as a Candidate Probiotic Strain for Human Health", Nutrients 14, no. 22, 2022 DOI : https://doi.org/10.3390/nu14224902
  19. E. Dincer and M. Kivanc, "Evaluation of metabolic activities and probiotic characteristics of two latilactobacillus sakei strains isolated from pastirma", World J Microbiol Biotechnol 38, no. 12, 237, 2022. DOI : https://doi.org/10.1007/s11274-022-03431-0
  20. Y. Yang, X. Song, Z. Xiong, Y. Xia, G. Wang and L. Ai, "Complete genome sequence of lactobacillus salivarius ar809, a probiotic strain with oropharyngeal tract resistance and adhesion to the oral epithelial cells", Curr Microbiol 79, no. 9, 280, 2022 DOI : https://doi.org/10.1007/s00284-022-02963-w
  21. H. Abouloifa, Y. Rokni, I. Hasnaoui, R. Bellaouchi, S. Gaamouche, N. Ghabbour, S. Karboune, R. Ben Salah, M. Brasca, G. D'hallewin, E. Saalaoui and A. Asehraou, "Characterization of antimicrobial compounds obtained from the potential probiotic lactiplantibacillus plantarum s61 and their application as a biopreservative agent", Braz J Microbiol 53, no. 3, 1501-1513, 2022 DOI : https://doi.org/10.1007/s42770-022-00791-5
  22. V. Rozman, P. Mohar Lorbeg, P. Treven, T. Accetto, M. Golob, I. Zdovc and B. Bogovic Matijasic, "Lactic acid bacteria and bifidobacteria deliberately introduced into the agro-food chain do not significantly increase the antimicrobial resistance gene pool", Gut Microbes 14, no. 1, 2127438, 2022. DOI : https://doi.org/10.1080/19490976.2022.2127438