과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1C1C1013567)과 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004). 선문대학교 차세대반도체기술연구소의 분석지원에 감사드립니다.
참고문헌
- XU, R.-P., LI Y.-Q., et al. Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C 2016, 4, 9116-42. https://doi.org/10.1039/C6TC03230C
- LEO, K. Efficient and flexible solution. Nature Photonics 2011, 5, 716-8. https://doi.org/10.1038/nphoton.2011.288
- BURROWS, P., GU G., et al. Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Transactions on electron devices 1997, 44, 1188-203. https://doi.org/10.1109/16.605453
- BATHELT, R., BUCHHAUSER D., et al. Light extraction from OLEDs for lighting applications through light scattering. 2007, 8,293-9. https://doi.org/10.1016/j.orgel.2006.11.003
- ADACHI, C., BALDO M. A., et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics 2001, 90, 5048-51. https://doi.org/10.1063/1.1409582
- CHUTINAN, A., ISHIHARA K., et al. Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Organic electronics 2005, 6, 3-9. https://doi.org/10.1016/j.orgel.2004.12.001
- SCHOLZ, S., KONDAKOV D., et al. Degradation mechanisms and reactions in organic light-emitting devices. Chemical reviews 2015, 115, 8449-503. https://doi.org/10.1021/cr400704v
- MoLLER, S., FORREST S. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics 2002, 91, 3324-7. https://doi.org/10.1063/1.1435422
- GALEOTTI, F., MRoZ W., et al. Microlens arrays for light extraction enhancement in organic light-emitting diodes: a facile approach. Organic Electronics 2013, 14, 212-8. https://doi.org/10.1016/j.orgel.2012.10.034
- BOCKSROCKER, T., HOFFMANN J., et al. Micro-spherically textured organic light emitting diodes: a simple way towards highly increased light extraction. Organic Electronics 2013, 14, 396-401. https://doi.org/10.1016/j.orgel.2012.10.036
- KIM, H. S., MOON S. I., et al. Novel fabrication method of microlens arrays with High OLED out-coupling efficiency. Optics Laser Technology 2016, 77, 104-10. https://doi.org/10.1016/j.optlastec.2015.09.006
- CHARI, K., LANDER C. W., et al. Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction. Applied Physics Letters 2008, 92, 111916. https://doi.org/10.1063/1.2901027
- LI, L., ZHONG Y., et al. Breath figure lithography: A facile and versatile method for micropatterning. Journal of colloid interface science 2010, 342, 192-7. https://doi.org/10.1016/j.jcis.2009.10.005
- WU, C. Y., CHIANG T. H., et al. Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods. Optics express 2008, 16, 19978-86. https://doi.org/10.1364/OE.16.019978
- CHENG, C. X., TIAN Y., et al. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 2005, 21, 6576-81. https://doi.org/10.1021/la050187d
- WANG, C., MAO Y., et al. Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. Journal of Materials Chemistry 2008, 18, 683-90. https://doi.org/10.1039/b715520d
- CONNAL, L. A., VESTBERG R., et al. Dramatic morphology control in the fabrication of porous polymer films. Advanced Functional Materials 2008, 18, 3706-14. https://doi.org/10.1002/adfm.200800568