DOI QR코드

DOI QR Code

Understanding the Concept of Iron Deficiency Anemia in Athletes: A Narrative Review

  • RANA, Anvi (Department of Food Technology and Nutrition, Lovely Professional University)
  • Received : 2022.11.19
  • Accepted : 2022.12.27
  • Published : 2022.12.31

Abstract

New insights into the aetiology of anaemia in athletes have been discovered in recent years. From hemodilution and redistribution, which are thought to commit to so-called "sports anaemia," to iron deficiency triggered by higher requirements, dietary requirements, decreased uptake, enhanced losses, hemolysis, and sequester, to genetic factors of different types of anaemia (some related to sport), anaemia in athletes necessitates a careful and multisystem methodology. Dietary factors that hinder iron absorption and enhance iron bioavailability (e.g., phytate, polyphenols) should be considered. Celiac disease, which is more common in female athletes, may be the consequence of an iron deficiency anaemia that is unidentified. Sweating, hematuria, gastrointestinal bleeding, inflammation, and intravascular and extravascular hemolysis are all ways iron is lost during strength training. In training, evaluating the iron status, particularly in athletes at risk of iron deficiency, may work on improving iron balance and possibly effectiveness. Iron status is influenced by a healthy gut microbiome. To eliminate hemolysis, athletes at risk of iron deficiency should engage in non-weight-bearing, low-intensity sporting activities.

Keywords

References

  1. Almar, M., Villa, J. G., Cuevas, M. J., Rodriguez-Marroyo, J. A., Avila, C., Gonzalez-Gallego, J., Urinary levels of 8-hydroxydeoxyguanosine as a marker of oxidative damage in road cycling. Free radical research, 36(3), 247-253, 2002. https://doi.org/10.1080/10715760290019255
  2. Agarwal, A. K., & Yee, J. (2019). Hepcidin. Advances in chronic kidney disease, 26(4), 298-305. https://doi.org/10.1053/j.ackd.2019.04.005
  3. Billett, H. H. (1990). Hemoglobin and hematocrit. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition.
  4. Bartsch, P., Mairbaurl, H., & Friedmann, B. (1998). Pseudo-anemia caused by sports. Therapeutische Umschau. Revue Therapeutique, 55(4), 251-255.
  5. Beard, J. L., Iron biology in immune function, muscle metabolism and neuronal functioning. J Nut, 131(2), 568S-580S, 2001. https://doi.org/10.1093/jn/131.2.568S
  6. Beard, J., Tobin, B., Iron status and exercise. Amer. J Clin. Nut, 72(2), 594S-597S, 2000. https://doi.org/10.1093/ajcn/72.2.594S
  7. Talbot, N. P., Lakhal, S., Smith, T. G., Privat, C., Nickol, A. H., Rivera-Ch, M., Robbins, P. A., Regulation of hepcidin expression at high altitude. Blo, J Amer Soc Hema, 119(3), 857-860, 2012.
  8. Barr, S. I., Rideout, C. A., Nutritional considerations for vegetarian athletes. Nut, 20(7-8), 696-703, 2004. https://doi.org/10.1016/j.nut.2004.04.015
  9. Bondi, A., Valentino, P., Daraio, F., Porporato, P., Gramaglia, E., Carturan, S., Roetto, A., Hepatic expression of hemochromatosis genes in two mouse strains after phlebotomy and iron overload. Haem, 90(9), 1161-1167, 2005.
  10. Bemben, D. A., Buchanan, T. D., Bemben, M. G., Knehans, A. W., Influence of type of mechanical loading, menstrual status, and training season on bone density in young women athletes. J. Stre. Con. Res, 18(2), 220-226, 2004. https://doi.org/10.1519/R-12652.1
  11. Brunner, C., & Wuillemin, W. A. (2010). Iron deficiency and iron deficiency anemia-symptoms and therapy. Therapeutische Umschau. Revue Therapeutique, 67(5), 219-223. https://doi.org/10.1024/0040-5930/a000040
  12. Bigelow, T. (2019). Ferritin: An Iron Deficiency Biomarker in Collegiate Female Distance Runners. West Virginia University.
  13. Brown, L. E. (2007). Strength training. Human Kinetics.
  14. Banfi, G., Fabbro, M. D., Mauri, C., Corsi, M. M., Melegati, G., Haematological parameters in elite rugby players during a competitive season. Clin. Lab. Haem, 28(3), 183-188, 2006. https://doi.org/10.1111/j.1365-2257.2006.00771.x
  15. Bianchetti, A., Rozzini, R., Carabellese, C., Zanetti, O., & Trabucchi, M. (1990). Nutritional intake, socioeconomic conditions, and health status in a large elderly population. Journal of the American Geriatrics Society, 38(5), 521-526. https://doi.org/10.1111/j.1532-5415.1990.tb02401.x
  16. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester, UK: John Wiley & Sons; 2009.
  17. Crichton, R. R., Ward, R. J., An overview of iron metabolism: molecular and cellular criteria for the selection of iron chelators. Cur Med Chem, 10(12), 997-1004, 2003 https://doi.org/10.2174/0929867033457566
  18. Ceylan, C., Miskioglu, M., Colak, H., Kiliccioglu, B., Ozdemir, E., Evaluation of reticulocyte parameters in iron deficiency, vitamin B12 deficiency and β-thalassemia minor patients. Int J Lab Hema, 29(5), 327-334, 2007. https://doi.org/10.1111/j.1365-2257.2006.00872.x
  19. Cote, J. (1999). The influence of the family in the development of talent in sport. The sport psychologist, 13(4), 395-417. https://doi.org/10.1123/tsp.13.4.395
  20. Cancelo-Hidalgo, M. J., Castelo-Branco, C., Palacios, S., Haya-Palazuelos, J., Ciria-Recasens, M., Manasanch, J., PerezEdo, L., Tolerability of different oral iron supplements: a systematic review. Current medical research and opinion, 29(4), 291-303, 2013. https://doi.org/10.1185/03007995.2012.761599
  21. Clenin, G., Cordes, M., Huber, A., Schumacher, Y. O., Noack, P., Scales, J., Kriemler, S., Iron deficiency in sports-definition, influence on performance and therapy. Swi. Med. Wee, 145, w14196, 2015.
  22. Das, K. C., Mukherjee, M., Sarkar, T. K., Dash, R. J., & Rastogi, G. K. (1975). Erythropoiesis and erythropoietin in hypoand hyperthyroidism. The Journal of Clinical Endocrinology & Metabolism, 40(2), 211-220. https://doi.org/10.1210/jcem-40-2-211
  23. Rowland, T., Iron deficiency in athletes: an update. Amer. J. Lif. Med, 6(4), 319-327, 2012. https://doi.org/10.1177/1559827611431541
  24. Durstine jL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, Du-Bose KD, Blood lipid and lipoprotein adaptions to exercise: a quantitative analysis, Spo Med; 31:1033-1062, 2001. https://doi.org/10.2165/00007256-200131150-00002
  25. Dhaliwal, G., Cornett, P. A., & Tierney Jr, L. M. (2004). Hemolytic anemia. American family physician, 69(11), 2599-2606.
  26. Dallalio, G., Law, E., Means Jr, R. T., Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood, 107(7), 2702-2704, 2006. https://doi.org/10.1182/blood-2005-07-2854
  27. Donovan, A., Roy, C. N., & Andrews, N. C. (2006). The ins and outs of iron homeostasis. Physiology, 21(2), 115-123. https://doi.org/10.1152/physiol.00052.2005
  28. DeRuisseau, K. C., Cheuvront, S. N., Haymes, E. M., Sharp, R. G., Sweat iron and zinc losses during prolonged exercise. Int J sport nut execr metab, 12(4), 428-437, 2002. https://doi.org/10.1123/ijsnem.12.4.428
  29. Davis, P. G., Bloomer, R. J., Wideman, L., Consitt, L. A., Goldfarb, A. H., You, T., Weaver, R. A. (2003). Effect of exercise duration on plasma protein carbonyls in male cyclists. Medi sci Sports execr, 35(5), S344, 2003.
  30. Danielson, B. G., Structure, chemistry, and pharmacokinetics of intravenous iron agents. J. Amer. Soc. Nephro., 15(suppl 2), S93-S98, 2004.
  31. DellaValle, D. M., Haas, J. D., Iron status is associated with endurance performance and training in female rowers. Med. Sci. Spo. Exer, 44(8), 1552-1559, 2012. https://doi.org/10.1249/MSS.0b013e3182517ceb
  32. Elsayed, M. E., Sharif, M. U., & Stack, A. G. (2016). Transferrin saturation: a body iron biomarker. Advances in clinical chemistry, 75, 71-97. https://doi.org/10.1016/bs.acc.2016.03.002
  33. Erdal, I., Kepenek, K., & KIZILGOZ, I. (2004). Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turkish Journal of Agriculture and Forestry, 28(6), 421-427.
  34. Ganz, T., Nemeth, E. (2006). Iron imports. IV. Hepcidin and regulation of body iron metabolism. Amer J PhysioGastrointest and Liver Physio, 290(2), G199-G203.
  35. Govus, A. D., Garvican-Lewis, L. A., Abbiss, C. R., Peeling, P., Gore, C. J., Pre-altitude serum ferritin levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass responses to altitude exposure. PLoS One, 10(8), e0135120, 2015. https://doi.org/10.1371/journal.pone.0135120
  36. Gera T, Sachdev HP, Nestel P. Effect of iron supplementation on physical performance in children and adolescents: systematic review of randomized controlled trials. Ind Pediatr; 44:15-24, 2007.
  37. Goddard, A. F., James, M. W., McIntyre, A. S., Scott, B. B., Guidelines for the management of iron deficiency anaemia. Gut, 60(10), 1309-1316, 2011. https://doi.org/10.1136/gut.2010.228874
  38. Hinton, P. S., Giordano, C., Brownlie, T., Haas, J. D., Iron supplementation improves endurance after training in irondepleted, nonanemic women. J App. Physio, 88(3), 1103-1111, 2011. https://doi.org/10.1152/jappl.2000.88.3.1103
  39. Higgins, J. P., Green, S., Cochrane Handbook for Systematic Reviews of Interventions Vol. 4 John Wiley & Sons, 2011.
  40. Hagler, L., Askew, E. W., Neville, J. R., Mellick, P. W., Coppes Jr, R. I., & Lowder Jr, J. F. (1981). Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. The American journal of clinical nutrition, 34(10), 2169-2177. https://doi.org/10.1093/ajcn/34.10.2169
  41. Hinton, P. S., Sinclair, L. M., Iron supplementation maintains ventilatory threshold and improves energetic efficiency in iron-deficient nonanemic athletes. Euro. J Clin. Nut, 61(1), 30-39, 2007. https://doi.org/10.1038/sj.ejcn.1602479
  42. Jankowska, E. A., Rozentryt, P., Witkowska, A., Nowak, J., Hartmann, O., Ponikowska, B., ... & Ponikowski, P. (2011). Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure. Journal of cardiac failure, 17(11), 899-906. https://doi.org/10.1016/j.cardfail.2011.08.003
  43. Kasvosve, I., & Delanghe, J. (2002). Total iron binding capacity and transferrin concentration in the assessment of iron status.
  44. Kataoka, Y., Kamijo, Y. I., Ogawa, Y., Sumiyoshi, E., Nakae, M., Ikegawa, S., ... & Nose, H. (2016). Effects of hypervolemia by protein and glucose supplementation during aerobic training on thermal and arterial pressure regulations in hypertensive older men. Journal of Applied Physiology, 121(4), 1021-1031. https://doi.org/10.1152/japplphysiol.00033.2016
  45. Krayenbuehl, P. A., Battegay, E., Breymann, C., Furrer, J., Schulthess, G., Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood, J Amer Society of Hema, 118(12), 3222-3227, 2011.
  46. Kemna, E. H., Kartikasari, A. E., van Tits, L. J., Pickkers, P., Tjalsma, H., Swinkels, D. W., Regulation of hepcidin: insights from biochemical analyses on human serum samples. Blo. Cells, Mol., Dis, 40(3), 339-346, 2008. https://doi.org/10.1016/j.bcmd.2007.10.002
  47. Kearney, S. L., Nemeth, E., Neufeld, E. J., Thapa, D., Ganz, T., Weinstein, D. A., Cunningham, M. J., Urinary hepcidin in congenital chronic anemias. Ped. Bl. Can, 48(1), 57-63, 2007. https://doi.org/10.1002/pbc.20616
  48. Karl, J. P., Lieberman, H. R., Cable, S. J., Williams, K. W., Young, A. J., & McClung, J. P. (2010). Randomized, doubleblind, placebo-controlled trial of an iron-fortified food product in female soldiers during military training: relations between iron status, serum hepcidin, and inflammation. The American Journal of Clinical Nutrition, 92(1), 93-100. https://doi.org/10.3945/ajcn.2010.29185
  49. Lynch, S., Indicators of the iron status of populations: red blood cell parameters. Assessing the Iron Status of Populations: Including Literature Reviews: Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva Switzerland, 6-8, 2004.
  50. Leers, M. P. G., Keuren, J. F. W., Oosterhuis, W. P., The value of the Thomas-plot in the diagnostic work up of anemic patients referred by general practitioners. Int J Lab Hema, 32(6p2), 572-581, 2010. https://doi.org/10.1111/j.1751-553X.2010.01221.x
  51. Lee, E. C., Fragala, M. S., Kavouras, S. A., Queen, R. M., Pryor, J. L., & Casa, D. J. (2017). Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. Journal of strength and conditioning research, 31(10), 2920. https://doi.org/10.1519/JSC.0000000000002122
  52. Lippi, G., Schena, F., Franchini, M., Salvagno, G. L., Guidi, G. C., Serum ferritin as a marker of potential biochemical iron overload in athletes. Clin. J. Spo. Med, 15(5), 356-358, 2005. https://doi.org/10.1097/01.jsm.0000179135.92468.f2
  53. Mujika, I., Padilla, S., Geyssant, A., & Chatard, J. C. (1997). Hematological responses to training and taper in competitive swimmers: relationships with performance. Archives of physiology and biochemistry, 105(4), 379-385. https://doi.org/10.1076/apab.105.4.379.9480
  54. Malczewska, J., Raczynski, G., Stupnicki, R., Iron status in female endurance athletes and in non-athletes. Int. J Spo. Nut. Exer. Meta, 10(3), 260-276, 2000. https://doi.org/10.1123/ijsnem.10.3.260
  55. Martin, D., Sale, C., Cooper, S. B., & Elliott-Sale, K. J. (2018). Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. International journal of sports physiology and performance, 13(7), 926-932. https://doi.org/10.1123/ijspp.2017-0330
  56. Markova, V., Holm, C., Pinborg, A. B., Thomsen, L. L., & Moos, T. (2019). Impairment of the developing human brain in iron deficiency: correlations to findings in experimental animals and prospects for early intervention therapy. Pharmaceuticals, 12(3), 120. https://doi.org/10.3390/ph12030120
  57. Miret, S., Simpson, R. J., McKie, A. T., Physiology and molecular biology of dietary iron absorption. Annual review of nutrition, 23(1), 283-301, 2003. https://doi.org/10.1146/annurev.nutr.23.011702.073139
  58. Mairbaurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in physiology, 4, 332. https://doi.org/10.3389/fphys.2013.00332
  59. McKie, A. T., Barrow, D., Latunde-Dada, G. O., Rolfs, A., Sager, G., Mudaly, E., Simpson, R. J., An iron-regulated ferric reductase associated with the absorption of dietary iron. Sci., 291(5509), 1755-1759, 2001. https://doi.org/10.1126/science.1057206
  60. Murray-Kolb, L. E., & Beard, J. L., Iron treatment normalizes cognitive functioning in young women. Amer J Clin Nut, 85(3), 778-787, 2007. https://doi.org/10.1093/ajcn/85.3.778
  61. Niederkofler, V., Salie, R., Arber, S., Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J. Clin. Inves, 115(8), 2180-2186, 2005. https://doi.org/10.1172/JCI25683
  62. Nemeth, E., Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., Ward, D. M., Kaplan, J., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. science, 306(5704), 2090-2093, 2004. https://doi.org/10.1126/science.1104742
  63. Ostojic, S. M., Ahmetovic, Z., Indicators of iron status in elite soccer players during the sports season. Int. J. Lab. Hema, 31(4), 447-452, 2009. https://doi.org/10.1111/j.1751-553X.2008.01064.x
  64. Parisotto, R., Gore, C. J., Emslie, K. R., Ashenden, M. J., Brugnara, C., Howe, C., ... & Hahn, A. G. (2000). A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica, 85(6), 564-572.
  65. Park, J. S., Chang, J. Y., Hong, J., Ko, J. S., Seo, J. K., Shin, S., & Lee, E. H. (2012). Nutritional zinc status in weaning infants: association with iron deficiency, age, and growth profile. Biological trace element research, 150(1), 91-102. https://doi.org/10.1007/s12011-012-9509-3
  66. Polancic jE, Electrloytes in: Bishop ML, Duben-Engelkrik jL, Fody EP (eds). Clinical Chemistry. Principles, Procedures, Correlations. Philladelphia: Lippincott Williams and Wikins; 294-321, 2000.
  67. Pak, M., Lopez, M. A., Gabayan, V., Ganz, T., Rivera, S., Suppression of hepcidin during anemia requires erythropoietic activity. Blood, 108(12), 3730-3735, 2006.
  68. Parks, R. B., Hetzel, S. J., & Brooks, M. A., Iron Deficiency and Anemia among Collegiate Athletes: A Retrospective Chart Review. Med Sci Spo Exer, 49(8), 1711-1715, 2017. https://doi.org/10.1249/MSS.0000000000001259
  69. Peeling, P., Dawson, B., Goodman, C., Landers, G., Wiegerinck, E. T., Swinkels, D. W., Trinder, D., Effects of exercise on hepcidin response and iron metabolism during recovery. Int J Sport Nutr Exerc Metab, 19(6), 583-597, 2009. https://doi.org/10.1123/ijsnem.19.6.583
  70. Peeling, P., Exercise as a mediator of hepcidin activity in athletes. Euro. J. App. Physio, 110(5), 877-883, 2010 https://doi.org/10.1007/s00421-010-1594-4
  71. Portal, S., Epstein, M., Dubnov, G., Iron deficiency and anemia in female athletes-causes and risks. Harefuah, 142(10), 698-703, 2003.
  72. Rodenberg, R. E., Gustafson, S., Iron as an ergogenic aid: ironclad evidence. Curr. Spo. Med. Repo, 6(4), 258-264, 2007. https://doi.org/10.1097/01.CSMR.0000306481.00283.f6
  73. Raunikar, R. A., & Sabio, H. (1992). Anemia in the adolescent athlete. American Journal of Diseases of Children, 146(10), 1201-1205.
  74. R'zik, S., Loo, M., Beguin, Y., Reticulocyte transferrin receptor (TfR) expression and contribution to soluble TfR levels. haemato, 86(3), 244-251, 2001.
  75. Sawka, M. N., Convertino, V. A., Eichner, E. R., Schnieder, S. M., & Young, A. J. (2000). Blood volume: importance and adaptations to exercise training, environmental stresses and trauma sickness.
  76. Strangman, G., Franceschini, M. A., & Boas, D. A. (2003). Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters. Neuroimage, 18(4), 865-879. https://doi.org/10.1016/S1053-8119(03)00021-1
  77. Santos-Silva, A., Rebelo, M. I., Castro, E. M. B., Belo, L., Guerra, A., Rego, C., Quintanilha, A., Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clinica chimica acta, 306(1-2), 119-126, 2001. https://doi.org/10.1016/S0009-8981(01)00406-5
  78. Sinclair, L. M., Hinton, P. S., Prevalence of iron deficiency with and without anemia in recreationally active men and women. J. Amer. Diet. Ass, 105(6), 975-978, 2005. https://doi.org/10.1016/j.jada.2005.03.005
  79. Swenne, I., Weight requirements for return of menstruations in teenage girls with eating disorders, weight loss and secondary amenorrhoea. Acta Paediatrica, 93(11), 1449-1455, 2004. https://doi.org/10.1080/08035250410033303
  80. Sherman, R. T., Thompson, R. A., The female athlete triad. J. Sch. Nur, 20(4), 197-202, 2004. https://doi.org/10.1177/10598405040200040301
  81. Spodaryk, K. (2002). Iron metabolism in boys involved in intensive physical training. Physiology & behavior, 75(1-2), 201-206. https://doi.org/10.1016/S0031-9384(01)00640-0
  82. Silva, B., & Faustino, P. (2015). An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(7), 1347-1359. https://doi.org/10.1016/j.bbadis.2015.03.011
  83. Steensma, D. P., Sasu, B. J., Sloan, J. A., Tomita, D., Loprinzi, C. L., The relationship between serum hepcidin levels and clinical outcomes in patients with chemotherapy-associated anemia treated in a controlled trial. J. Clin. Onco., 29(15_suppl), 9031-9031, 2011 https://doi.org/10.1200/jco.2011.29.15_suppl.9031
  84. Toki, Y., Ikuta, K., Kawahara, Y., Niizeki, N., Kon, M., Enomoto, M., Okumura, T., Reticulocyte hemoglobin equivalent as a potential marker for diagnosis of iron deficiency. In J Hema, 106(1), 116-125, 2017.
  85. Telford, R. D., Sly, G. J., Hahn, A. G., Cunningham, R. B., Bryant, C., Smith, J. A., Footstrike is the major cause of hemolysis during running. J. App. Physio, 94(1), 38-42, 2003. https://doi.org/10.1152/japplphysiol.00631.2001
  86. Truksa, J., Lee, P., Peng, H., Flanagan, J., Beutler, E., The distal location of the iron responsive region of the hepcidin promoter. Blood, J Amer. Soc. Hemato, 110(9), 3436-3437, 2007.
  87. Troadec, M. B., Laine, F., Daniel, V., Rochcongar, P., Ropert, M., Cabillic, F., Brissot, P., Daily regulation of serum and urinary hepcidin is not influenced by submaximal cycling exercise in humans with normal iron metabolism. Euro. J. App. Physio, 106(3), 435-443, 2009. https://doi.org/10.1007/s00421-009-1031-8
  88. Van Iperen, C. E., Van De Wiel, A., Marx, J. J. M., Acute event-related anaemia. Bri. J. haem, 115(4), 739-743, 2001. https://doi.org/10.1046/j.1365-2141.2001.03167.x
  89. Voss, S. C., Varamenti, E., Elzain Elgingo, M., Bourdon, P. C., New parameters and reference values for monitoring iron status in Middle Eastern adolescent male athletes. J Spo Med Phys Fit, 54(2), 179-85, 2014.
  90. Wetz, A. J., Richardt, E. M., Schotola, H., Bauer, M., & Brauer, A. (2017). Haptoglobin and free haemoglobin during cardiac surgery-is there a link to acute kidney injury?. Anaesthesia and intensive care, 45(1), 58-66. https://doi.org/10.1177/0310057x1704500109
  91. Wehrlin, J. P., Zuest, P., Hallen, J., & Marti, B. (2006). Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. Journal of applied Physiology, 100(6), 1938-1945. https://doi.org/10.1152/japplphysiol.01284.2005