DOI QR코드

DOI QR Code

Synthesis and Characterization of Collagen Peptide Based Copolymer from Shaving Scrap

셰이빙 스크랩으로부터 콜라겐 펩타이드계 공중합체 합성과 특성

  • Park, Min Seok (Leather Research Center, Korea Institute of Footwear and Leather) ;
  • Shin, Soo Beom (Leather Research Center, Korea Institute of Footwear and Leather) ;
  • Kim, Ho Soo (Leather Research Center, Korea Institute of Footwear and Leather) ;
  • Kim, Min Soo (Department of Fine Chemistry and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Kim, Ha Sun (Department of Fine Chemistry and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Jang, Jae Hyeok (Department of Fine Chemistry and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Lee, Jin Kye (Research and Development Center, Chunil Paint Co., Ltd) ;
  • Lee, Dong Kuk (Department of Fine Chemistry and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 박민석 (한국신발피혁연구원 피혁연구센터) ;
  • 신수범 (한국신발피혁연구원 피혁연구센터) ;
  • 김호수 (한국신발피혁연구원 피혁연구센터) ;
  • 김민수 (서울과학기술대학교 정밀화학과 & 의공학-바이오소재융합협동과정) ;
  • 김하선 (서울과학기술대학교 정밀화학과 & 의공학-바이오소재융합협동과정) ;
  • 장재혁 (서울과학기술대학교 정밀화학과 & 의공학-바이오소재융합협동과정) ;
  • 이진규 (천일페인트(주) 연구개발부) ;
  • 이동국 (서울과학기술대학교 정밀화학과 & 의공학-바이오소재융합협동과정)
  • Received : 2022.10.12
  • Accepted : 2022.10.28
  • Published : 2022.12.10

Abstract

The leather industry generates a large amount of hazardous leather waste of various types every year. Among them, shaving scrap is difficult to recycle because it contains chromium ions. Many studies in recent years have shown that shaving scraps can be processed into various types of valuable products, such as adsorbent, filler, and poultry feed. In this study, collagen peptides were extracted from shaving scraps and structurally modified to be developed as new materials with improved physicochemical properties. First, the chromium ions contained in the shaving scraps were removed using a sodium hydroxide solution, and purified through concentration and low-temperature crystallization. The purified collagen peptide was used to prepare the powder using a spray dryer. The extracted collagen peptides were structurally modified by introducing double bonds by reacting with methacrylic anhydride (MAA), and the product was confirmed by 1H NMR spectroscopy. Next, a copolymer was prepared by redox polymerization of the modified collagen peptide (MCP) and 2-ethylhexyl acrylate (2-EHA). The structure of the copolymer was qualitatively confirmed by FT-IR. In conclusion, this study confirmed that collagen peptides can be extracted from shaving scrap and converted into new eco-friendly materials through certain treatments.

피혁 산업은 매년 여러 유형의 유해한 피혁 폐기물을 발생시킨다. 그중에서, 셰이빙 스크랩은 크롬이 함유되어 있어 재활용하기 어렵다. 최근에 셰이빙 스크랩을 이용한 흡착제, 충전제 및 가금류 사료와 같은 다양한 부가가치 제품생산에 활용될 수 있는 많은 연구 결과들이 발표되었다. 본 연구에서는 셰이빙 스크랩으로부터 콜라겐 펩타이드를 추출하고, 이들의 물성을 개선하여 새로운 소재로 사용될 수 있는 방법을 연구하였다. 먼저, 수산화나트륨을 이용하여 셰이빙 스크랩에 포함된 크롬을 제거하였다. 그리고 가수분해물을 제조하여 농축 및 저온 결정화를 통해 정제하였다. 정제된 콜라겐 펩타이드 농축물을 스프레이 드라이어를 이용하여 분말로 제조하였다. 추출 및 정제된 콜라겐 펩타이드와 methacrylic anhyride (MAA)를 반응시켜 이중결합을 도입하였으며, 1H 핵자기공명분광법으로 확인하였다. 다음으로, 개질화 콜라겐 펩타이드에 2-ethylhexyl acrylate (2-EHA)와 레독스 중합하여 공중합체를 만들었으며, 적외선 분광분석으로 그라프트 여부를 정성적으로 확인하였다. 결론적으로, 본 연구를 통하여 피혁 폐기물인 셰이빙 스크랩으로부터 콜라겐 펩타이드를 추출한 후 일정한 처리를 통하여 새로운 친환경 재료로 전환할 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 2020년도 환경부의 재원으로 한국 환경산업기술원의 지원을 받아 수행한 과제입니다.

References

  1. V. Ottani, D. Martini, M. Franchi, A. Ruggeri, and M. Raspanti, Hierarchical structures in fibrillar collagens, Micron., 33, 587-596 (2022). https://doi.org/10.1016/S0968-4328(02)00033-1
  2. C. Knupp and J. M. Squire, Molecular packing in network-forming collagens, Adv. Protein Chem., 70, 375-403 (2005). https://doi.org/10.1016/S0065-3233(05)70011-5
  3. J. M. Baek, K. H. Kang, S. H. Kim, J. S. Noh, and K. S. Jeong, Development of high functional collagen peptide materials using skate skins, J. Environ. Sci. Intl., 25, 579-588 (2016). https://doi.org/10.5322/JESI.2016.25.4.579
  4. K. Michael, Thermal stability of hide and leather at different moisture contents, J. Am. Leather Chem. Assoc., 86, 269-280 (1991).
  5. S. Swarnalatha, A. G. Kumar, S. Tandalah, and G. Sekaran, Efficient and safe disposal of chrome leather scraps discharged from leather industry using thermal combustion, J. Chem. Technol. Biotechnol., 84, 751-760 (2009). https://doi.org/10.1002/jctb.2108
  6. V. Beghetto, A. Zancanaro, A. Scrivanti, U. Matteoli, and G. Pozza, The leather industry: a chemistry insight part I: an overview of the industrial process, Sciences At Ca'Foscari., 1, 12-22 (2013).
  7. R. J. Santos, D. L. S. Agostini, F. C. Cabrera, E. R. Budemberg, and A. E. Job, Recycling leather waste: preparing and studying on the microstructure, mechanical, and rheological properties of leather waste/rubber composite, Polym. Compos., 36, 2275-2281 (2015). https://doi.org/10.1002/pc.23140
  8. K. H. Gustavson, Evidence for the rupture of intermolecularly coordinated peptide bonds in the heat denaturation(Shrinkage) of collagen, J. Am. Leather Chem. Assoc., 41, 47-58 (1946).
  9. C. Kamaraj, S. Lakshmi, C. Rose, U. Mani, E. Paul, A. B. Mandal, and S. Gangopadhyay, Experimental study on micro surfacing using chrome leather scraps impregnated with modified bitumen emulsion, J. Sci. Ind. Res., 75, 378-382 (2016).
  10. J. G. Yang, Z. H. Shan, Y. W. Zhang, and L. Chen, Stabilization and cyclic utilization of chrome leather shavings, Environ. Sci. Pollut. Res., 26, 4680-4689 (2019). https://doi.org/10.1007/s11356-018-3687-2
  11. A. Pati, R. Chaudhary, and S. Subramani, A review on management of chrome-tanned leather shavings: A holistic paradigm to combat the environmental issues, Environ. Sci. Pollut. Res., 21, 11266-11282 (2014). https://doi.org/10.1007/s11356-014-3055-9
  12. S. Saravanabhavan, K. J. Sreeram, J. Raghava Rao, and B. Unni Nair, The three pot solution for chromium, tannins and solid wastes: recovery and reuse technique for spent semi-chrome liquor and chrome shavings, J. Soc. Leather Technol. Chem., 88, 202-207 (2004).
  13. A. Przepiorkowska, K. Chronska, and M. Zaborski, Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber, J. Hazard. Mater., 141, 252-257 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.136
  14. G. Ramamurthy, B. Ramalingam, M. F. Katheem, T. P. Sastry, S. Inbasekaran, V. Thanveer, and A. B. Mandal, Total elimination of polluting chrome leather scraps, chrome, and dye exhaust liquors of tannery by a method using keratin hydrolysate, ACS. Sustain. Chem. Eng., 3, 1348-1358 (2015). https://doi.org/10.1021/acssuschemeng.5b00071
  15. M. Costa and C. B. Klein, Toxicity and carcinogenicity of chromium compounds in humans, Crit. Rev. Toxicol., 36, 155-163 (2006). https://doi.org/10.1080/10408440500534032
  16. R. Chaudhary and A. Pati, Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste, Environ. Sci. Pollut. Res., 23, 8120-8124 (2016). https://doi.org/10.1007/s11356-016-6302-4
  17. M. Catalina, G. E. Attenburrow, J. Cot, A. D. Covington, and A. P. M. Antunes, Application of gelatin extracted from chrome leather scraps for the glazed fnishing of leather, J. Am. Leather Chem. Assoc., 105, 138-144 (2010).
  18. X. Dang, Z. Shan, and H. Chen, The preparation and applications of one biodegradable liquid film mulching by oxidized corn starch-gelatin composite, Appl. Biochem. Biotechnol., 180, 917-929 (2016). https://doi.org/10.1007/s12010-016-2142-4
  19. X. Dang, Z. Shan, and H. Chen, Biodegradable films based on gelatin extracted from chrome leather scrap. Int. J. Biol. Macromol., 107, 1023-1029 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.068
  20. J. Kopecek and J. Yang, Smart self-assembled hybrid hydrogel biomaterials, Angew. Chem. Int. Ed., 51, 7396-7417 (2012). https://doi.org/10.1002/anie.201201040
  21. X. Wang, F. Yao, J. Su, X. Zhang, X. Tong, Z. Qin, and C. Yuan, Modification of natural rubber latex by graft copolymerization of 2-ethylhexyl acrylate and methacrylic acid, Trans. Tianjin Univ., 26, 314-323 (2020). https://doi.org/10.1007/s12209-020-00254-8
  22. J. S. Langerwerf, Trivalent chromium a recyclable raw material of the leather industry: A questionable genotoxic substance, J. Soc. Leather Technol. Chem., 69, 166-174 (1985).
  23. J. Munoz, M. Maldonado, and A. Rangel, development of a tanning process based on using hydrolyzated material collected from leather scrap, J. Am. Leather Chem. Assoc., 97, 83-88 (2002).
  24. V. Kasparkova, K. Kolomaznik, and L. Burketova, Characterization of low-molecular weight collagen hydrolyzates prepared by combination of enzymatic and acid hydrolysis, J. Am. Leather Chem. Assoc., 104, 46-51 (2009).
  25. X. Dang, M. Yang, B. Zhang, H. Chen, and Y. Wang, Recovery and utilization of collagen protein powder extracted from chromium leather scrap waste, Environ. Sci. Pollut. Res., 26, 7277-7283 (2019). https://doi.org/10.1007/s11356-019-04226-x
  26. R. Alexa, H. Iovu, J. Ghitman, and A. Serafim, 3D-printed gelatin methacryloyl-based scaffolds with potential application in tissue engineering, Polymers, 13, 727-744 (2021). https://doi.org/10.3390/polym13050727
  27. B. H. Lee, H. Shirahama, N. J. Cho, and L. P. Tan, Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels, RSC. Adv., 5, 106094-106097 (2015). https://doi.org/10.1039/C5RA22028A
  28. A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1, 31-38 (2000). https://doi.org/10.1021/bm990017d
  29. B. J. Klotz, D. Gawlitta, A. J. Rosenberg, J. Malda, and F. P. Melchels, Gelatin-methacryloyl hydrogels: Towards biofabrication based tissue repair, Trends Biotechno., 34, 394-407 (2016). https://doi.org/10.1016/j.tibtech.2016.01.002
  30. K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl(GelMA) hydrogels, Biomaterials, 73, 254-271 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.045
  31. K. Yue, X. Li, K. Schrobback, A. Sheikhi, and N. Annabi, Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives, Biomaterials, 139, 163-171 (2017). https://doi.org/10.1016/j.biomaterials.2017.04.050
  32. S. H. Park, T. H. Lee, Y. I. Park, S. M. Noh, and J. C. Kim, Effect of the n-butyl acrylate/2-ethylhexyl acrylate weight ratio on the performances of waterborne core-shell PSAs, J. Ind. Eng. Chem., 53, 111-118 (2017). https://doi.org/10.1016/j.jiec.2017.04.010