DOI QR코드

DOI QR Code

Effect of Vanadium Loading Amount on Pt/V/TiO2 Catalyst on NH3-SCO Reaction

NH3-SCO 반응에서 Vanadium 담지함량이 Pt/V/TiO2 촉매에 미치는 영향

  • Kim, Min Su (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Kim, Ki Wang (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 김민수 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김기왕 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2022.10.28
  • Accepted : 2022.11.19
  • Published : 2022.12.10

Abstract

In the study, NH3-SCO (selective catalytic oxidation) reaction activity accodrding to vanadium loading amount were compared when preparing Pt/V/TiO2. Considering both NH3 conversion rate and N2 selectivity, V 2 wt% loading of the catalyst showed the best activity. When the correlation between physical/chemical characteristics and reaction activity was confirmed, it was confirmed that the increase in lattice oxygen and (V3+ + V4+) ratios were active factor. In addition, when the SO2 durability experiment was conducted using the best catalyst, it was confirmed that the influence was insignificant even if the high concentration of SO2 was injected.

본 연구에서는 Pt/V/TiO2 촉매 제조 시, V 담지 함량에 따른 NH3-SCO (selective catalytic oxidation) 반응 활성을 비교하였다. NH3 전환율 및 N2 선택성을 모두 고려하였을 때, V이 2 wt% 담지된 촉매에서 가장 우수한 성능을 나타내었다. 이에 따라 물리/화학적 특성과 반응활성과의 상관관계를 확인하였을 때, 격자산소종의 증가 및 (V3+ + VM4+) 비율의 증가가 활성인자임을 확인하였다. 또한 가장 우수한 촉매를 이용하여 SO2 내구성 실험을 진행하였을 때, 고농도의 SO2가 주입되더라도 영향이 미미함을 확인하였다.

Keywords

Acknowledgement

This work was conducted under framework of Research and Development Program of the Korea Institute of Energy Research (KIER)(C2-2435).

References

  1. M. J. Lippits, A. C. Gluhoi, and B. E. Nieuwenhuys, A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx, Catal. Today, 137, 446-452 (2008). https://doi.org/10.1016/j.cattod.2007.11.021
  2. S. A. C. Carabineiro, A. V. Matveev, V. V. Gorodetskii, and B. E. Nieuwenhuys, Selective oxidation of ammonia over Ru(0001), Surf. Sci., 555, 83-93 (2004). https://doi.org/10.1016/j.susc.2004.02.022
  3. C. Chen, Y. Cao, S. Liu, and W. Jia, The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst, Appl. Surf. Sci., 507, 145153-145160 (2020). https://doi.org/10.1016/j.apsusc.2019.145153
  4. F. Gao, Y. Liu, Z. Sani, X. Tang, H. Yi, S. Zhao, Q. Yu, and Y. Zhou, Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms, J. Environ. Chem. Eng., 9, 104575-104594 (2021). https://doi.org/10.1016/j.jece.2020.104575
  5. M. Jablonska and A. M. Robles, A comparative mini-review on transition metal oxides applied for the selective catalytic ammonia oxidation (NH3-SCO), Meterials, 15, 4770-4793 (2022). https://doi.org/10.3390/ma15144770
  6. M. Jablonska, TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO, Catal. Commun., 70, 66-71 (2015). https://doi.org/10.1016/j.catcom.2015.07.012
  7. T. Lan, Y. Zhao, J. Deng, J. Zhang, L. Shi, and D. Zhang, Selective catalytic oxidation of NH3 over noble metal-based catalyst: State of the art and future prospects, Catal. Sci. Technol., 10, 5792-5810 (2020). https://doi.org/10.1039/d0cy01137a
  8. R. Q. Long and R. T. Yang, Noble metal (Pt, Rh, Pd) promoted Fe-ZSM5 for selective catalytic oxidation of ammonia to N2 at low temperature, Catal. Lett., 78, 353-357 (2002). https://doi.org/10.1023/A:1014929222854
  9. G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, and R. J. Willey, Adsorption, activation, and oxidation of ammonia over SCR catalysts, J. Catal., 157, 523-535 (1995). https://doi.org/10.1006/jcat.1995.1316
  10. E. Moran, C. Cattaneo, H. Mishima, B. A. Lopez de Mishima, S. P. Silvetti, J. L. Rodriguez, and E. Pastor, Ammonia oxidation on electrodeposited Pt-Ir alloys, J. Solid State Electrochem., 12, 583-589 (2007). https://doi.org/10.1007/s10008-007-0407-0
  11. G. S. Wong, and J. M. Vohs, An XPS study of the growth and electronic structure of vanadia films supported on CeO2(111), Surf. Sci., 498, 266-274 (2002). https://doi.org/10.1016/S0039-6028(01)01761-7
  12. N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, Vanadia-Titania catalysts for selective catalysts reduction of nitric oxide by ammonia, J. Catal., 151, 241-252 (1995). https://doi.org/10.1006/jcat.1995.1025
  13. J. Haber, M. Witcko, and R. Tokarz, Vanadium Pentoxide. Structures and Properties, Appl. Catal. A, 157, 3-22 (1997). https://doi.org/10.1016/S0926-860X(97)00017-3
  14. J. Haber and M. Witcko, Oxidation catalysis-electronic theory revisited, J. Catal., 216, 416-424 (2003). https://doi.org/10.1016/S0021-9517(02)00037-4
  15. Z. Wu, R. Jin, Y. Liu, and H. Wang, Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature, Catal. Commun., 9, 2217-2220 (2008). https://doi.org/10.1016/j.catcom.2008.05.001
  16. S. M. Lee, H. H. Lee, and S. C. Hong, Influence of calcination temperature on Ce/TiO2 catalyst of selective catalytic oxidation of NH3 to N2, Appl. Catal. A:Gen., 470, 189-198 (2014). https://doi.org/10.1016/j.apcata.2013.10.057