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FUSS-NARAYANA STATISTICS

Sangwook Kim

Abstract. We show that valleys, high peaks, and modular ascents
are statistics of Fuss-Catalan paths having a distribution given by
the Fuss-Narayana number. We prove the results using the Cycle
Lemma and provide bijections among them. We also show that
relative peaks are independent of the base path. In particular,
valleys and high peaks can be obtained from relative peaks by fixing
the base path in certain ways.

1. Introduction

A Dyck path of length n is a lattice path from (0, 0) to (n, n) using
east steps E = (1, 0) and north steps N = (0, 1) such that it stays weakly
above the diagonal line y = x. It is well-known that the number of Dyck
paths of length n is given by the famous Catalan numbers
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One of the most common refinements of the Catalan numbers is given
by the Narayana numbers
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.

The statistic on the set of all Dyck paths having a distribution given by
the Narayana numbers is called a Narayana statistic. Some well-known
Narayana statistics for a Dyck path P are:

1. va(P ): the number of valleys (sequences EN);
2. hp(P ): the number of high peaks (sequences NE strictly above the

line y = x);
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3. ea(P ): the number of even ascents, i.e., the number of N ’s in an
even position;

4. lnfs(P ): the number of long non-final sequences, more precisely
the number of sequences NNE and EEN .

Narayana distributions are explained in [6].
An s-Fuss-Catalan path of length n is a path from (0, 0) to (n, sn)

using east steps E and north steps N such that it stays weakly above
the line y = sx. The number of s-Fuss-Catalan paths of length n is
given by the s-Fuss-Catalan numbers
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.

In this article, we extend Narayana statistics to s-Fuss-Catalan paths.
More precisely, we show that the following statistics of a Fuss-Catalan
path P have distributions given by the s-Fuss-Narayana numbers
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)
:

1. va(P ): the number of valleys (sequences EN);
2. hp(P ): the number of high peaks (sequences NE strictly above the

line y = sx);
3. ma(P ): the number of modular ascents, i.e., the number of N ’s in

an i(s+ 1)th position in P for i = 1, 2, . . . , n.

Brändén [1] defined the descent set desQ(P ) of a Dyck path P with
respect to a fixed Dyck path Q and showed that va is obtained when a
fixed Dyck path is N · · ·NE · · ·E and hp is obtained when a fixed Dyck
path is NENE · · ·NE. We will use the notion of relative peaks rpQ(P )
instead of desQ(P ). We also generalize relative peaks to the case of
Fuss-Catalan paths and give a simple direct proof to show that relative
peaks are independent of the base path.

2. Relative peaks

In this section, we show that va and hp are Fuss-Narayana statistics.
Moreover, we show that they are examples of relative peaks. We also
show that relative peaks are independent of the base Fuss-Catalan path.

The proofs of some theorems in this and the next section will rest
on the “Cycle Lemma” of Dvoretzky and Motzkin [3]. Let A denote
a set of alphabets and let A∗ be the set of all words generated by A.
The weight function is the map σ : A∗ → (Z,+) induced by the weight
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function σ : A → (Z,+) on A. Given any word w = w1w2 · · ·wn ∈ A∗, a
conjugate of w is an element ofA∗ of the form wiwi+1 · · ·wnw1w2 · · ·wi−1

for some 1 ≤ i ≤ n. Then the Cycle Lemma can be stated in the
following form.

Lemma 2.1 (Cycle Lemma). For w ∈ A∗ with σ(w) = 1, there is
unique conjugate of w such that all of its nonempty prefixes have positive
weight.

The following theorem is given by Cigler [2]. We provide a proof
using the Cycle Lemma. The proof is a straightforward generalization
of the proof for Dyck paths given in [4, Theorem 2.5.2 (6)].

Theorem 2.2. The number of s-Fuss-Catalan paths with k valleys
is the s-Fuss-Narayana number.

Proof. Since any s-Fuss-Catalan path with k valleys has k+1 peaks,
it is enough to show that the number of s-Fuss-Catalan paths with k+1
peaks is the s-Fuss-Narayana number. If we consider paths from (0,−1)
to (n, sn) that end with an east step E with k + 1 peaks NE, each
one has n conjugates of this form. Since we can write such a path as
Ei0−1N j1Ei1N j2Ei2 · · ·N jk+1Eik+1 where

(i0 − 1) + i1 + · · ·+ ik+1 = n; il > 0

and
j1 + · · ·+ jk+1 = sn+ 1; jl > 0,

there are

(
sn

k

)(
n

k + 1

)
such paths. If we consider A = {N iE : i ≥ 0}

with the weight function σ(N iE) = i− s, Lemma 2.1 implies that each
path has a unique conjugate such that all of its nonempty prefixes have
positive weight. The result follows since a path such that all of its
nonempty prefixes have positive weight begins with at least s+ 1 north
steps and stays weakly above the line y = sx except its first north
step.

The bijection ϕ is defined for Dyck paths by Sulanke [5] and it works
for Fuss-Catalan paths as well.

Theorem 2.3. The number of s-Fuss-Catalan paths with k high
peaks is the s-Fuss-Narayana number.

Proof. Define the map ϕ from the set P1 of s-Fuss-Catalan paths
with k high peaks to the set P2 of s-Fuss-Catalan paths with k valleys
as follows: If (x, y) is the vertex of a high peak of a path P in P1, then
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(a) P1 (high peaks) (b) P2 (valleys) (c) P3 (modular ascents)

Figure 1. 2-Fuss-Catalan paths of length 4

(x + 1, y − 1) will be the vertex of a valley of ϕ(P ). Since the set of
valleys completely determines the Fuss-Catalan path, ϕ(P ) is contained
in P2. Since the set of high peaks completely determines the Fuss-
Catalan path by adding some peaks touching the line y = sx, ϕ−1 is
also well-defined.

Example 2.4. The path P1 with two high peaks and its correspond-
ing path P2 with two valleys are shown in Figures 1(a) and 1(b). High
peaks in P1 and valleys in P2 are colored in red.

We can write the (i + 1)st point x in an s-Fuss-Catalan path P =
p1p2 · · · p(s+1)n as x = p1 + p2 + · · ·+ pi where pj = (0, 1) or pj = (1, 0)
for 1 ≤ j ≤ i ≤ (s+ 1)n. We say that a point x = p1 + p2 + · · ·+ pi in
an s-Fuss-Catalan path P = p1p2 · · · p(s+1)n is a relative peak of P with
respect to a fixed s-Fuss-Catalan path Q if

• pipi+1 = NE and x is strictly north-west of Q or
• pipi+1 = EN and x is strictly south-east of Q.

Sometimes we also say that the corresponding step NE or EN is a rela-
tive peak of P with respect to Q. For a fixed s-Fuss-Catalan path Q, the
statistic rpQ(P ) of an s-Fuss-Catalan path P is defined as the number
of relative peaks of P with respect to Q.

Example 2.5. Figure 2 shows the relative peaks of the 2-Fuss-Catalan
path P = NNNNNEENNENE (black and red) with respect to the
path Q = NNNENNNENNEE (blue). The points (0, 5), (2, 5), and
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Q

P

Figure 2. The relative peaks of P with respect to Q

(3, 7) are relative peaks of P with respect to Q and they are colored in
red.

Example 2.6. The statistics va and hp arise when fixing the base
path Q in certain ways.

(a) If Q = NN · · ·NEE · · ·E, then rpQ = va.
(b) If Q = N sEN sE · · ·N sE, then rpQ = hp.

Two lattice paths Q1 and Q2 are said to be adjacent if they are differ
by one box, i.e., Q1 = Q ′NEQ ′′ and Q2 = Q ′ENQ ′′ for some lattice
paths Q ′ and Q ′′.

Theorem 2.7. The distributions of relative peaks of s-Fuss-Catalan
paths are independent of the base path.

Proof. Since any two s-Fuss-Catalan paths can be obtained from each
other by a sequence of adjacent s-Fuss-Catalan paths, it is enough to
show the case when two base paths are adjacent. Let Q1 = Q ′NEQ ′′

and Q2 = Q ′ENQ ′′ be adjacent s-Fuss-Catalan paths and let x be the
end point ofQ ′ and y be the beginning point ofQ ′′. If an s-Fuss-Catalan
path P does not pass through either x or y, we can see rpQ1

(P ) =
rpQ2

(P ). If an s-Fuss-Catalan path P1 has the form P ′NEP ′′ where x
is the end point of P ′, then rpQ1

(P1) = rpQ2
(P1)−1 since the end point

of P ′N is a relative peak of P1 with respect to Q2 but is not a relative
peak of P1 with respect to Q1. Also, rpQ1

(P2) = rpQ2
(P2) + 1 for the

s-Fuss-Catalan path P2 = P ′ENP ′′ (where P ′ and P ′′ are equal to
those in P1 = P ′NEP ′′) since the end point of P ′E is a relative peak



340 Sangwook Kim

of P2 with respect to Q1 but is not a relative peak of P2 with respect
to Q2. Thus the distributions of relative peaks are independent of the
base path.

3. Modular ascents

In this section, we show that ma is a Fuss-Narayana statistic. We
also provide a bijection between the set of s-Fuss-Catalan paths with k
valleys and the set of s-Fuss-Catalan paths with k modular ascents.

Theorem 3.1. The number of s-Fuss-Catalan paths with k modular
ascents is the s-Fuss-Narayana number.

Proof. In order to prove the theorem, we express the Fuss-Narayana
number in the followng form:

1
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.

For convenience, we use the following interpretation of Fuss-Catalan
paths in this proof. We replace a north step N = (0, 1) with an up step
U = (1, 1) and an east step E = (1, 0) with a down step D = (1,−s).
Then an s-Fuss-Catalan path from (0, 0) to (n, sn) turns out to be a
lattice path from (0, 0) to ((s + 1)n, 0) such that it stays weakly above
the x-axis. In Figure 3, (a) shows a 2-Fuss-Catalan path using N and
E and (b) shows the same 2-Fuss-Catalan path using U and D.

Consider the set P of paths from (0, 0) to ((s+1)n, s+1) with k+1
modular up steps that end with an up step. Any path in P has sn+1 up
steps and n−1 down steps. Since the paths end with an up step, we have

k up steps to place in n−1 positions congruent modulo s+1 in

(
n− 1

k

)
ways. The remaining sn− k up steps can be assigned in sn positions in(

sn

sn− k

)
=

(
sn

k

)
ways. Any path in P has k + 1 conjugates that end

with an up step.
In order to use the Cycle Lemma, we form an alphabet set

A = {w1w2 · · ·wi : i = (s+ 1)j for some j and wi = U}.
Note that each step in A goes up (or down) by a multiple of s+1. Thus
we define the weight of a step in A by a difference of the heights of its
beginning point and the end point divided by s+1. Lemma 2.1 implies
that each path has a unique conjugate such that all of its nonempty
prefixes have positive weight. Since such a path stays weakly above the
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(a) (b)

Figure 3. Two representations of 2-Fuss-Catalan paths
of length 4

x-axis, we get an s-Fuss-Catalan path by replacing the last up step with
the down step and the result follows.

Theorem 3.2. There is a bijection between the set of s-Fuss-Catalan
paths of length n with k valleys and the set of s-Fuss-Catalan paths of
length n with k modular ascents.

Proof. Let P be an s-Fuss-Catalan path of length n with k valleys.
Let (x1, y1), . . . , (xk, yk) be the points of valleys of P . Define a sequence
m1,m2, . . . ,mn−1 by

mi =

{
N if there is a valley whose x-coordinate is i,

E otherwise,

and a1, a2, . . . , ans−1 by

ai =

{
E if there is a valley whose y-coordinate is i,

N otherwise.

Define a map ψ by

ψ(P ) = Na1 · · · as−1m1as · · · a2s−1m2 · · ·mn−1a(n−1)s · · · ans−1E.

Since all points of valleys of P lie weakly above the line y = sx, ψ(P )
is an s-Fuss-Catalan path of length n. Since exactly k of m1, . . . ,mn−1

are N , we can see that ψ(P ) has k modular ascents.
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Conversely, given an s-Fuss-Catalan path Q of length n, we write

Q = Na1 · · · as−1m1as · · · a2s−1m2 · · ·mn−1a(n−1)s · · · ans−1E.

Then exactly k of m1, . . . ,mn−1 are N and exactly k of a1, . . . , ans−1

are E. If xi is the position of ith N in the sequence m1, . . . ,mn−1

and yi is the position of ith E in the sequence a1, . . . , ans−1, we define
ψ−1(Q) to be the s-Fuss-Catalan path whose valleys are given by points
(x1, y1), . . . , (xk, yk).

Example 3.3. As shown in Figure 1(b), P2 = NNNENNNEENNE
is a 2-Fuss-Catalan path of length 4 with two valleys whose positions are
(1, 3) and (3, 6). Thus we obtain sequences m1 = N,m2 = E,m3 = N
and a1 = N, a2 = N, a3 = E, a4 = N, a5 = N, a6 = E, a7 = N . Thus
ψ(P2) is the lattice path P3 = NNNNEENNNENE shown in Fig-
ure 1(c). Modular ascents of P3 are colored in red.

4. Future work

Brändén [1] showed that the relative peaks for Dyck paths are in-
dependent of the base path using a bijection between the set of linear
extensions of the poset 2 × n and the set of Dyck paths of length n.
He also showed that the statistic lnfs is a Narayana statistics from the
shelling of the order complex of the order ideals of the poset 2× n.

Although we prove that the relative peaks for Fuss-Catalan paths are
independent of the base path, we could not find a poset whose linear
extensions are in one-to-one correspondence with the set of all Fuss-
Catalan paths. It would be nice if we could find such a poset and find a
Fuss analogue of lnfs for Dyck paths.
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