DOI QR코드

DOI QR Code

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2

이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구

  • Lee, Dong-Jun (Animal Environment Division, National Institute of Animal Science) ;
  • Jung, Jong-Min (Animal Environment Division, National Institute of Animal Science) ;
  • Kim, Jung Kon (Animal Environment Division, National Institute of Animal Science) ;
  • Lee, Dong-Hyun (Animal Environment Division, National Institute of Animal Science) ;
  • Kim, Hyunjong (Animal Environment Division, National Institute of Animal Science) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Kwon, Eilhann E. (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 이동준 (국립축산과학원 축산환경과) ;
  • 정종민 (국립축산과학원 축산환경과) ;
  • 김중곤 (국립축산과학원 축산환경과) ;
  • 이동현 (국립축산과학원 축산환경과) ;
  • 김현종 (국립축산과학원 축산환경과) ;
  • 박영권 (서울시립대 환경공학부) ;
  • 권일한 (한양대학교 자원환경공학과)
  • Received : 2022.11.22
  • Accepted : 2022.12.15
  • Published : 2022.12.30

Abstract

To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

가축분뇨의 대량 발생에 따른 환경적 부담을 완화하기 위해 가축분뇨의 열분해를 가축분뇨 처리 방법 중 하나로 제시하였다. 탄소 활용 측면에서, 열분해는 분뇨로부터 유용한 탄소 기반 물질을 생산할 수 있다는 장점이 있다. 본 연구는 우분 열분해 과정에서 이산화탄소 적용에 따른 합성가스 발생 특성을 연구하기 위해 수행되었다. 실험결과, 이산화탄소 조건에서 600 ℃이상에서 일산화탄소 가스 발생량이 증가하는 것으로 나타났는데, 이는 이산화탄소와 우분 유래 휘발성물질의 균질반응에 기인한다. 우분 열분해 시 합성가스 증대를 위해, Co/SiO2를 활용하여 촉매 열분해 실험을 추진하였다. 촉매를 이용한 우분 열분해 시 합성가스인 수소와 일산화탄소가 모든 온도 영역에서 크게 증가하는 것으로 나타났으며, 이를 통해 이산화탄소가 가축분뇨 열분해를 통한 합성가스 생산에 활용 가능함을 알 수 있었다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 2025 축산현안대응산업화기술개발사업의 지원을 받아 연구되었음(과제번호: 321090-02)

References

  1. Roger, F. and Fouquet, R., "Historical energy transitions: Speed, prices and system transformation", Energy Research & Social Science, 22, pp. 7~12. (2016). https://doi.org/10.1016/j.erss.2016.08.014
  2. IEA, "Key World Energy Statistics 2019", IEA Publications. (2019).
  3. Hook, M. and Tang, X., "Depletion of fossil fuels and anthropogenic climate change-A review", Energy Policy, 52, pp. 797~809. (2013). https://doi.org/10.1016/j.enpol.2012.10.046
  4. Woodard, D. L., Davis, S. J. and Randerson, J. T., "Economic carbon cycle feedbacks may offset additional warming from natural feedbacks", Proceedings of the National Academy of Sciences of the United States of America, 116(3), pp. 759~764. (2019). https://doi.org/10.1073/pnas.1805187115
  5. Dhillon, R. S. and von Wuehlisch, G., "Mitigation of global warming through renewable biomass", Biomass and Bioenergy, 48, pp. 75~89. (2013). https://doi.org/10.1016/j.biombioe.2012.11.005
  6. Stier, P., Hodnebrog, O., Myhre, G., Samset, B., Alterskjaer, K., Andrews, T., Boucher, O., Faluvegi, G., Flaschner, D., Forster, P., Kasoar, M., Kirkevag, A., Lamarque, J.-F., Olivie, D., Richardson, T., Shawki, D., Shindell, D., Shine, K., Takemura, T., Voulgarakis, A. and Watson-Parris, D., "Increased water vapour lifetime due to global warming", Atmospheric Chemistry and Physics Discussions, 9, pp. 12887~12899. (2019).
  7. Lian, J., Zhang, Y., Ma, C., Yang, Y. and Chaima, E., "A review on recent sizing methodologies of hybrid renewable energy systems", Energy Conversion and Management, 199, pp. 112027. (2019). https://doi.org/10.1016/j.enconman.2019.112027
  8. Kammen, D. M. and Sunter, D. A., "City-integrated renewable energy for urban sustainability", Science, 352(6288), pp. 922~928. (2016). https://doi.org/10.1126/science.aad9302
  9. Kralova, I. and Sjoblom, J., "Biofuels-renewable energy sources: a review", Journal of Dispersion Science and Technology, 31(3), pp. 409~425. (2010). https://doi.org/10.1080/01932690903119674
  10. Lardon, L., Helias, A., Sialve, B., Steyer, J.-P. and Bernard, O., "Life-cycle assessment of biodiesel production from microalgae", Environmental Science & Technology, 43(17), pp. 6475~6481. (2009). https://doi.org/10.1021/es900705j
  11. Huh, S.-Y., Lee, J. and Shin, J., "The economic value of South Koreas renewable energy policies (RPS, RFS, and RHO): A contingent valuation study", Renewable and Sustainable Energy Reviews, 50, pp. 64~72. (2015). https://doi.org/10.1016/j.rser.2015.04.107
  12. Balan, V., Chiaramonti, D. and Kumar, S., "Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels", Biofuels, Bioproducts and Biorefining, 7(6), pp. 732~759. (2013). https://doi.org/10.1002/bbb.1436
  13. Cho, S.-H., Kim, K.-H., Jeon, Y. J. and Kwon, E. E., "Pyrolysis of microalgal biomass in carbon dioxide environment", Bioresource Technology, 193, pp. 185~191. (2015). https://doi.org/10.1016/j.biortech.2015.06.119
  14. Mirmasoumi, S., Ebrahimi, S. and Saray, R. K., "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions", Energy, 157, pp. 707~717. (2018). https://doi.org/10.1016/j.energy.2018.06.003
  15. Firouzi, S., Nikkhah, A. and Aminpanah, H., "Resource use efficiency of rice production upon single cropping and ratooning agro-systems in terms of bioethanol feedstock production", Energy, 150, pp. 694~701. (2018). https://doi.org/10.1016/j.energy.2018.02.155
  16. Martin, M. and Grossmann, I. E., "Optimal Integration of Algae-Switchgrass Facility for the Production of Methanol and Biodiesel", ACS Sustainable Chemistry & Engineering, 4(10), pp. 5651~5658. (2016). https://doi.org/10.1021/acssuschemeng.6b01558
  17. Zhang, Q., Li, Q., Wang, H., Wang, Z., Yu, Z., Zhang, L., Huang, W. and Fang, Y., "Experimental study on co-pyrolysis and gasification behaviors of petroleum residue with lignite", Chemical Engineering Journal, 343, pp. 108~117. (2018). https://doi.org/10.1016/j.cej.2018.02.098
  18. Han, L., Ro, K. S., Wang, Y., Sun, K., Sun, H., Libra, J. A. and Xing, B., "Oxidation resistance of biochars as a function of feedstock and pyrolysis condition", Science of the Total Environment, 616-617, pp. 335~344. (2018). https://doi.org/10.1016/j.scitotenv.2017.11.014
  19. Yildiz, G., Ronsse, F., Venderbosch, R., Duren, R. V., Kersten, S. R. A. and Prins, W., "Effect of biomass ash in catalytic fast pyrolysis of pine wood", Applied Catalysis B: Environmental, 168-169, pp. 203~211. (2015). https://doi.org/10.1016/j.apcatb.2014.12.044
  20. Li, Q. and Hu, G., "Techno-economic analysis of biofuel production considering logistic configurations", Bioresource Technology, 206, pp. 195~203. (2016). https://doi.org/10.1016/j.biortech.2016.01.101
  21. Ghaderi, H., Pishvaee, M. S. and Moini, A., "Biomass supply chain network design: An optimization-oriented review and analysis", Industrial Crops and Products, 94, pp. 972~1000. (2016). https://doi.org/10.1016/j.indcrop.2016.09.027
  22. Varun, Bhat, I. K. and Prakash, R., "LCA of renewable energy for electricity generation systems-A review", Renewable and Sustainable Energy Reviews, 13(5), pp. 1067~1073. (2009). https://doi.org/10.1016/j.rser.2008.08.004
  23. Awasthi, M. K., Sarsaiya, S., Wainaina, S., Rajendran, K., Kumar, S., Quan, W., Duan, Y., Awasthi, S. K., Chen, H., Pandey, A., Zhang, Z., Jain, A. and Taherzadeh, M. J., "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives", Renewable and Sustainable Energy Reviews, 111, pp. 115~131. (2019). https://doi.org/10.1016/j.rser.2019.05.017
  24. Juan, S., Saldarriaga, J. F., Aguado, R., Pablos, A., Amutio, M., Olazar, M. and Bilbao, J., "Fast characterization of biomass fuels by thermogravimetric analysis (TGA)", Fuel, 140, pp. 744~751. (2015). https://doi.org/10.1016/j.fuel.2014.10.024
  25. Christopher, W., Waters, C. L., Janupala, R. R., Mallinson, R. G. and Lobban, L. L.,"Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects", Journal of Analytical and Applied Pyrolysis, 126, pp. 380~389. (2017). https://doi.org/10.1016/j.jaap.2017.05.008
  26. Fu, P. P. and Harvey, R. G., "Dehydrogenation of polycyclic hydroaromatic compounds", Chemical Reviews, 78(4), pp. 317~361. (1978). https://doi.org/10.1021/cr60314a001
  27. Claoston, N., Samsuri, A. W., Ahmad Husni, M. H. and Mohd Amran, M. S., "Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars", Waste Management & Research, 32(4), pp. 331~339. (2014). https://doi.org/10.1177/0734242X14525822
  28. Jang, W.-J., Jeong, D.-W., Shim, J.-O., Kim, H.-M., Roh, H.-S., Son, I. H. and Lee, S. J., "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application", Applied Energy, 173, pp. 80~91. (2016). https://doi.org/10.1016/j.apenergy.2016.04.006
  29. Kim, J., Kim, K.-H. and Kwon, E. E., "Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2", Energy, 100, pp. 51~57. (2016). https://doi.org/10.1016/j.energy.2016.01.075
  30. Park, S., Jae, J., Farooq, A., Kwon, E. E., Park, E. D., Ha, J.-M., Jung, S.-C. and Park, Y.-K., "Continuous pyrolysis of organosolv lignin and application of biochar on gasification of high density polyethylene", Applied Energy, 255, p. 113801. (2019). https://doi.org/10.1016/j.apenergy.2019.113801
  31. Kim, Y., Oh, J.-I., Vithanage, M., Park, Y.-K., Lee, J. and Kwon, E. E., "Modification of biochar properties using CO2", Chemical Engineering Journal, 372, pp. 383~389. (2019). https://doi.org/10.1016/j.cej.2019.04.170