DOI QR코드

DOI QR Code

The Chemical Composition of HD47536: A Planetary Host Halo Giant with Possible 𝛌 Bootis Features and Signs of Interstellar Matter Accretion

  • Received : 2022.11.15
  • Accepted : 2022.12.13
  • Published : 2022.12.15

Abstract

We investigated the chemical composition of the planetary host halo star HD47536 via high-resolution spectral observations recorded using a 1.5 meter Cerro Tololo Inter-American Observatory (CTIO) telescope (Chile). Furthermore, we determined the abundances of 38 chemical elements. Both light and heavy elements were overabundant compared to the iron group elements. The abundance pattern of HD47536 was similar to that of halo-type stars, with an enrichment of heavy elements. We analyzed the relationships between the relative abundances of chemical elements and their second ionization potentials and condensation temperatures. We demonstrated that the interplay of charge-exchange reactions owing to the accretion of interstellar matter and the gas-dust separation mechanism can influence the initial abundances and can be used to qualitatively explain the abundance patterns in the atmosphere of HD47536.

Keywords

Acknowledgement

This study used the SIMBAD database, operated at CDS, Strasbourg, France. SA is thankful to the administration of ESO for financial support during his stay in Garching within a program of Ukrainian astronomers at risk and to Dr. F. Primas and N. Silva for excellent organization of their short-term visits. VK is grateful to the Vector-Stiftung at Stuttgart, Germany, for support within the program "2022 - Immediate help for Ukrainian refugee scientists" under grant P2022-0064. AD was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant No. AP14972694).

References

  1. Adibekyan VZ, Sousa SG, Santos NC, Delgado Mena E, Gonzalez Hernandez JI, et al., Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program, Astron. Astrophys. 545, A32 (2012). https://doi.org/10.1051/0004-6361/201219401
  2. Andrievsky S, On the possible origin of λ Boo stars, Astron. Astrophys. 321, 838-840 (1997).
  3. Andrievsky S, The sodium abundance in λ Bootis stars, Astron. Astrophys. 449, 345-347 (2006). https://doi.org/10.1051/0004-6361:20053723
  4. Andrievsky S, Paunzen E, Towards the solution of the λ Bootis problem, Mon. Not. R. Astron. Soc. 313, 547-552 (2000). https://doi.org/10.1046/j.1365-8711.2000.03241.x
  5. Ardeberg A, Virdefors B, Solar line blocking for lambda lambda 4006-6860, Astron. Astrophys. Suppl. Ser. 36, 317-321 (1979).
  6. Beirao P, Santos NC, Israelian G, Mayor M, Abundances of Na, Mg and Al in stars with giant planets, Astron. Astrophys. 438, 251-256 (2005). https://doi.org/10.1051/0004-6361:20052750
  7. Bohm-Vitense E, The puzzle of the metallic line stars, Publ. Astron. Soc. Pac. 118, 419-435 (2006). https://doi.org/10.1086/499385
  8. Borra EF, Landstreet JD, The magnetic fields of the AP stars, Astrophys. J. Suppl. Ser. 42, 421-445 (1980). https://doi.org/10.1086/190656
  9. Caffau E, Bonifacio P, Faraggiana R, Francois P, Gratton RG, et al., Sulphur abundance in Galactic stars, Astron. Astrophys. 441, 533-548 (2005). https://doi.org/10.1051/0004-6361:20052905
  10. Charbonneau P, A simple accretion/diffusion model for lambda Bootis stars, Astrophys. J. Lett. 372, L33 (1991). https://doi.org/10.1086/186017
  11. Charbonneau P, Particle transport and the lambda Bootis phenomenon. I. The diffusion/mass-loss model revisited, Astrophys. J. 405, 720 (1993). https://doi.org/10.1086/172399
  12. da Silva L, Girardi L, Pasquini L, Setiawan J, von der Luhe O, et al., Basic physical parameters of a selected sample of evolved stars, Astron. Astrophys. 458, 609-623 (2006). https://doi.org/10.1051/0004-6361:20065105
  13. Delbouille L, Rolland G, Neven L, Atlas Photometrique du Spectre Solaire de λ 3000 a λ 10000 (Universite de Liege, Institut d'Astrophysique, Liege, 1973).
  14. Ecuvillon A, Israelian G, Santos NC, Shchukina NG, Mayor M, et al., Oxygen abundances in planet-harbouring stars: comparison of different abundance indicators, Astron. Astrophys. 445, 633-645 (2006). https://doi.org/10.1051/0004-6361:20053469
  15. Fuhr JR, Wiese WL, A critical compilation of atomic transition probabilities for neutral and singly ionized iron, J. Phys. Chem. Ref. Data 35, 1669-1809 (2006). https://doi.org/10.1063/1.2218876
  16. Galvez-Ortiz MC, Delgado-Mena E, Gonzalez Hernandez JI, Israelian G, Santos NC, et al., Beryllium abundances in stars with planets:extending the sample, Astron. Astrophys. 530, A66 (2011). https://doi.org/10.1051/0004-6361/200913827
  17. Gilli G, Israelian G, Ecuvillon A, Santos NC, Mayor M, Abundances of refractory elements in the atmospheres of stars with extrasolar planets, Astron. Astrophys. 449, 723-736 (2006). https://doi.org/10.1051/0004-6361:20053850
  18. Greenstein JL, Analysis of the metallic-line stars. II. Astrophys. J. 109, 121 (1949). https://doi.org/10.1086/145112
  19. Grevesse N, Sauval AJ, The solar abundance of iron and the photospheric model, Astron. Astrophys. 347, 348-354 (1999).
  20. Havnes O, Magnetic stars as generators of cosmic rays, Astron. Astrophys. 13, 52-57 (1971).
  21. Havnes O, Conti PS, Magnetic accretion processes in peculiar A stars, Astron. Astrophys. 14, 1-11 (1971).
  22. Jeong Y, Yushchenko AV, Doikov DN, The interaction between accretion from the interstellar medium and accretion from the evolved binary component in barium stars, J. Astron. Space Sci. 35, 75-82 (2018). https://doi.org/10.5140/JASS.2017.35.1.1
  23. Jeong Y, Yushchenko AV, Doikov DN, Gopka VF, Yushchenko VO, Chemical composition of RR Lyn - an eclipsing binary system with Am and λ Boo type components, J. Astron. Space Sci. 34, 75-82 (2017). https://doi.org/10.5140/JASS.2017.34.2.75
  24. Jofre E, Petrucci R, Saffe C, Saker L, Artur de la Villarmois E, et al., Stellar parameters and chemical abundances of 223 evolved stars with and without planet, Astron. Astrophys. 574, A50 (2015). https://doi.org/10.1051/0004-6361/201424474
  25. Kurucz RL, SYNTHE Spectrum Synthesis Programs and Line Data (Smithsonian Astrophysical Observatory, Cambridge, 1993).
  26. Lodders K, Solar system abundances and condensation temperatures of the elements, Astrophys. J. 591, 1220-1247 (2003). https://doi.org/10.1086/375492
  27. Luck RE, Abundances in the local region. I. G and K giants, Astron. J. 150, 88 (2015). https://doi.org/10.1088/0004-6256/150/3/88
  28. Melendez J, Asplund M, Gustafsson B, Yong D, The peculiar solar composition and its possible relation to planet formation, Astrophys. J. 704, L66-L70 (2009). https://doi.org/10.1088/0004-637X/704/1/L66
  29. North P, The rotation of AP stars, Astron. Astrophys. 141, 328-340 (1984).
  30. Perottoni HD, Amarante JAS, Limberg G, Rocha-Pinto HJ, Rossi S, et al., Searching for extragalactic exoplanetary systems: the curious case of BD+20 2457, Astrophys. J. 913, L3 (2021). https://doi.org/10.3847/2041-8213/abfb06
  31. Ramirez I, Melendez J, Asplund M, Accurate abundance patterns of solar twins and analogs: does the anomalous solar chemical composition come from planet formation?, Astron. Astrophys. 508, L17-L20 (2009). https://doi.org/10.1051/0004-6361/200913038
  32. Rutten RJ, van der Zalm EBJ, Revision of solar equivalent widths, Fe I oscillator strengths and the solar iron abundance, Astron. Astrophys. Suppl. Ser. 55, 143-161 (1984).
  33. Sadakane K, Ohnishi T, Ohkubo M, Takeda Y, Metallicities in four planet-harbouring K-type giants: HD 47536, HD 59686, HD 137759, and HD 219449, Publ. Astron. Soc. Jpn. 57, 127-133 (2005). https://doi.org/10.1093/pasj/57.1.127
  34. Setiawan J, Hatzes AP, von der Luhe O, Pasquini L, Naef D, et al., Evidence of a sub-stellar companion around HD 47536, Astron. Astrophys. 398, L19-L23 (2003). https://doi.org/10.1051/0004-6361:20021846
  35. Simmerer J, Sneden C, Cowan JJ, Collier J, Woolf VM, et al., The rise of the s-process in the galaxy, Astrophys. J. 617, 1091-1114 (2004). https://doi.org/10.1086/424504
  36. Soto MG, Jenkins JS, Jones MI, RAFT - I. Discovery of new planetary candidates and updated orbits from archival FEROS spectra, Mon. Not. R. Astron. Soc. 451, 3131-3144 (2015). https://doi.org/10.1093/mnras/stv1144
  37. Stuerenburg S, Abundance analysis of lambda Bootis stars, Astron. Astrophys. 277, 139-154 (1993).
  38. van Belle GT, von Braun K, Directly determined linear radii and effective temperatures of exoplanet host stars, Astrophys. J. 694, 1085-1098 (2009). https://doi.org/10.1088/0004-637X/694/2/1085
  39. Venn KA, Lambert DL, The chemical composition of three λ Bootis stars, Astrophys. J. 363, 234 (1990). https://doi.org/10.1086/169334
  40. Venn KA, Lambert DL, Could the ultra-metal-poor stars be chemically peculiar and not related to the first stars?, Astrophys. J. 677, 572-580 (2008). https://doi.org/10.1086/529069
  41. Wood BJ, Smithe DJ, Harrison T, The condensation temperatures of the elements: a reappraisal, Am. Mineral. 104, 844-856 (2019). https://doi.org/10.2138/am-2019-6852CCBY
  42. Yushchenko AV, URAN: a software system for the analysis of stellar spectra, Proceedings of the 20th Stellar Conference of the Czech and Slovak Astronomical Institutes, Brno, Czech Republic, 5-7 Nov 1997.
  43. Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of ρ puppis and the signs of accretion in the atmospheres of B-F type stars, Astron. J. 149, 59 (2015). https://doi.org/10.1088/0004-6256/149/2/59
  44. Yushchenko AV, Kim S, Jeong Y, Demessinova A, Yushchenko V, et al., The possible signs of hydrogen and helium accretion from interstellar medium on the atmospheres of F-K giants in the local region of the galaxy, J. Astron. Space Sci. 38, 175-183 (2021). https://doi.org/10.5140/JASS.2021.38.3.175
  45. Yushchenko AV, Rittipruk P, Yushchenko VA, Kang YW, The planetary host red giant HD47536 - chemical composition and signs of accretion, Odessa Astron. Publ. 26, 131-136 (2013).