
1  |   INTRODUCTION

Machine-to-Machine (M2M) communication, also called 
machine-type communication (MTC), is predicted to be one 
of the major applications of current and future cellular com-
munications [1,2]. M2M communication, as defined in [3], 
enables communication between various devices without or 
with limited human intervention. Different devices such as 
sensors, actuators, meters, and radio frequency tags are used 
as M2M devices to read the status of machines and share in-
formation, either on a wireless network, wired network, or 
a hybrid of both to a target destination [4,5]. M2M devices 
are an important part of the emerging “Internet of Things” 
and “Smart City” paradigms [6,7], which are expected to pro-
vide solutions to current and future socioeconomic demands. 

In addition, M2M devices engender new applications in 
areas such as building and industrial automation, remote 
and mobile healthcare, and many more, as described in [8]. 
According to [9], the number of M2M devices is expected to 
significantly outnumber the world population [10]. This cre-
ates a significant gap and makes it practically impossible for 
humans to control them. Therefore, there is a need for these 
devices to autonomously interact among themselves.

The envisaged growth of M2M applications has led to 
many research studies on protocols and products oriented 
to support M2M services. The 6LowPAN protocol suite is 
a popular technology for low-power devices [11], the IEEE 
802.15.4 standard is used for low-bit rate short-range trans-
mission [12], and Zigbee (which utilizes the 802.15.14 
standard) is for M2M device interconnection in short-range 

Received: 12 March 2020  |  Revised: 18 July 2020  |  Accepted: 15 October 2020

DOI: 10.4218/etrij.2020-0091  

O R I G I N A L  A R T I C L E

Priority-based learning automata in Q-learning random access 
scheme for cellular M2M communications

Nasir A. Shinkafi1   |   Lawal M. Bello1  |   Dahiru S. Shu'aibu1  |   Paul D. Mitchell2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change 
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

1Department of Electrical Engineering, 
Bayero University, Kano, Kano, Nigeria
2Department of Electronic Engineering, 
University of York, York, UK

Correspondence
Paul D. Mitchell, Department of Electronic 
Engineering, University of York, 
Heslington, York, UK.
Email: paul.mitchell@york.ac.uk

Abstract
This paper applies learning automata to improve the performance of a Q-learning 
based random access channel (QL-RACH) scheme in a cellular machine-to-machine 
(M2M) communication system. A prioritized learning automata QL-RACH (PLA-
QL-RACH) access scheme is proposed. The scheme employs a prioritized learning 
automata technique to improve the throughput performance by minimizing the level 
of interaction and collision of M2M devices with human-to-human devices sharing 
the RACH of a cellular system. In addition, this scheme eliminates the excessive 
punishment suffered by the M2M devices by controlling the administration of a pen-
alty. Simulation results show that the proposed PLA-QL-RACH scheme improves 
the RACH throughput by approximately 82% and reduces access delay by 79% with 
faster learning convergence when compared with QL-RACH.

K E Y W O R D S

learning automata, LTE network, machine to machine, Q-learning, RACH congestion

    | wileyonlinelibrary.com/journal/etrijETRI Journal. 2021;43(5):787–798. 787

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0003-2334-1441
mailto:﻿
https://orcid.org/0000-0003-0714-2581
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:paul.mitchell@york.ac.uk


SHINKAFI et al.

wireless sensor networks [13]. Additional studies that could 
add value to M2M applications with communication proto-
cols include the European Installation Bus/Konnex, Local 
Operating Network, and Building Automation and Control 
Network for home automation [14]. Most of the existing com-
munication access protocols or techniques are incapable of 
fulfilling the demand for ubiquitous access. Although short-
range network solutions, such as Zigbee/6LoWPAN or the 
IEEE 802.11ah extension for M2M communications support 
the interconnection of M2M devices in the same local area, 
there is a need for a long-range network to provide end-to-end 
communications [15]. A ubiquitous radio technology that can 
provide wide coverage with energy efficiency, minimal cost 
per bit, and low latency is what M2M communication needs. 
Cellular networks with their existing infrastructure, capacity, 
and ubiquity have all the necessary requirements to enable 
M2M long-range communications [16]. Current cellular net-
work technologies will not be able to accommodate the pro-
jected growth of M2M traffic, as they have been primarily 
designed to support human-to-human (H2H) traffic.

A cellular system has been designed primarily for H2H 
devices that have significant data transfer requirements, 
whereas M2M communication typically corresponds to a 
large number of devices that require sporadic transmission 
of short packets. Heavy M2M traffic occurs when many such 
devices are activated simultaneously, generating many instan-
taneous attempts to access the cellular network through the 
initial signaling random access channel (RACH), which leads 
to its overload and congestion [17]. As a result of the heavy 
traffic generated by M2M devices, the current RACH access 
approach is not sufficient [16,17]. This is recognized as a 
major challenge for wireless cellular systems, and it needs to 
be addressed to support significant M2M traffic without im-
pacting H2H communication services. There is a need to de-
sign an effective RACH access technique to overcome these 
challenges to accommodate additional M2M traffic in cellu-
lar M2M communication. Numerous RACH access protocols 
have been proposed to address these challenges. Prominent 
among them are the reinforcement learning-based techniques 
such as priority-based learning automata (PLA) [18] and Q-
learning RACH (QL-RACH) [19], with associated modifica-
tion schemes presented in [20–22].

A PLA scheme is proposed in this paper to improve the 
performance of the QL-RACH scheme [19]. The scheme is 
called PLA-QL-RACH and uses a learning automata (LA) 
technique to improve RACH throughput performance [19] by 
minimizing interaction and collision among M2M devices or 
with H2H devices sharing the RACH resources. This scheme 
also eliminates the excessive punishment suffered by M2M 
devices by controlling the administration of a penalty factor 
applied in [19]. Simulations were undertaken to assess the 
performance of PLA-QL-RACH compared with the existing 
schemes. The results show that the PLA-QL-RACH scheme 

significantly improves the overall RACH throughput and re-
duces the access delay through faster learning convergence.

The remainder of this paper is structured as follows. 
Section 2 summarizes the related research. The system model 
is introduced in Section 3, and the proposed PLA-QL-RACH 
scheme is described in Section 4. Section 5 provides a de-
tailed performance evaluation, and the paper is concluded in 
Section 6.

2  |   RELATED WORK

A number of techniques have been proposed to deal with 
the RACH overload challenges when M2M devices coex-
ist with H2H devices in cellular networks. These are either 
reinforcement learning (RL) based or non-RL based, which 
includes separating M2M and H2H users in the RACH con-
test by allocating separate RACH resources, access class 
barring (ACB), MTC-specific back-off, and pull-based tech-
niques. This section provides a summary of RACH access 
scheme research to support the co-existence of M2M and 
H2H traffic over cellular networks using RL and non-RL-
based approaches.

A self-optimizing overload control (SOOC) scheme is 
outlined in [23] to handle the physical RACH (PRACH) 
overload using resource separation. The scheme uses a 
mechanism that collects and monitors information on RACH 
overload at each random access (RA) cycle. Accordingly, 
long-term evolution (LTE) is structured in such a way that an 
evolved node B (eNB) adapts the number of RA slots within 
the RA cycles. The M2M device enters an overload control 
mode when it does not manage to secure an RA slot during 
the first attempt. To regulate RA retries following collision, 
a classic p-persistent mechanism is applied in this mode. The 
scheme also adds high- and low-priority access classes for 
time-tolerant and time-sensitive M2M devices. It sets dif-
ferent p values depending on the device access class. The 
SOOC protocol monitors the congestion level, making the 
eNB react dynamically by adjusting the number of PRACH 
RA slots within successive cycles, thereby maintaining a 
target maximum collision probability for the system. The 
SOOC scheme handles high-traffic load situations for two-
time dependent priority classes but suffers RACH conges-
tion/overload when a large number of M2M devices with 
diverse priority classes are considered. To handle the over-
head generated from a large number of M2M devices, Taleb 
and Kunz [24] proposed a bulk M2M signaling scheme as a 
resolution mechanism for congestion/overload. The proposal 
worked on the assumption that M2M signaling messages 
are moderately delay tolerant. This makes it feasible to min-
imize overheads at the eNB by exploiting bulk processing 
and aggregating signaling data from M2M devices before 
forwarding them to the core network. The scheme efficiently 
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handles the traffic generated by a large number of channel 
access requests. However, it is restricted to only M2M traf-
fic without considering that of H2H in sharing the RACH. 
In an attempt to improve [24], a slotted access scheme was 
proposed in [25] to provide RA cycle requests for M2M. The 
scheme employs RA slots for dedicated access, reserved for 
each M2M device and accessed in a collision-free manner. 
The reserved slots for every M2M device are generated from 
the International Mobile Subscriber Identity, which uniquely 
identifies each device, while the cycle parameter is broad-
casted by the eNB within each cycle. The scheme protects 
H2H devices from the impact of M2M access, but may result 
in delays due to the dedicated RA slots used for each M2M 
device. This further creates access collisions, and the scheme 
is not efficient for heavily delay-constrained M2M applica-
tions. To minimize the probability of collision and average 
access delay for a large number of fixed M2M devices, an 
RA scheme for fixed-location M2M communication was 
proposed in [26]. This RA scheme exploits the resource al-
location procedure in terms of fixed uplink timing alignment 
(TA) between the devices and the eNB according to five RA 
steps. The process is similar to the traditional LTE RA proce-
dure except in step 3, where TA information is used to lower 
the probability of collision during transmission of Message 
3. The TA value of a static M2M device is assumed to re-
main constant over time. In addition, once the TA received 
from the eNB in Message 2 varies from that of the M2M 
device, there is a high probability that Message 2 is meant 
for a distinct M2M device that is transmitted on the same 
PRACH. The M2M device evades transmission of Message 
3 in step 3, which minimizes the probability of collision at 
step 4 and, in turn, the access delay. The scheme minimizes 
the likelihood of collision and access delay; however, it is 
partial in resource allocation owing to the failure to transmit 
Message 3, which can bring about a rise in access delay and 
poor quality of service (QoS) performance.

A reinforcement learning-based eNB selection algorithm 
(Q-learning) to reduce access delay was proposed in [27]. The 
RL-based algorithm allows M2M devices to select an eNB in 
a self-organized fashion. The algorithm yields a lower access 
delay when compared to random eNB selection. However, 
the algorithm does not take throughput into account when 
determining the QoS performance. In [28], a game theoretic 
scheme was proposed to enhance system throughput in an 
RACH overload scenario. RA resources are organized into 
three groups: for H2H, M2M, and hybrid usage. Different 
RACH preamble pools are earmarked as RH, RM, and RB 
where RH is the preamble reserved for H2H usage, RM is for 
M2M usage, and RB is for both H2H and M2M usage. The 
M2M devices pull the preamble either in the M2M-dedicated 
pool, in the shared one, or remain silent with a probability 
distribution that is determined based on the outcome of a 
game. The scheme attains an improved system throughput for 

both M2M and H2H devices, but at the expense of a high-
access delay. To minimize congestion and high-access delay, 
the Fast Adaptive Slotted ALOHA (FASA) scheme was de-
veloped in [29] as an appropriate option for RA control of 
event-driven M2M communications. Slots are considered to 
have various states: idle, successful, or collided. The scheme 
employs these states to accelerate the process of tracking 
the network status by adjusting the transmission probabil-
ity of a p-persistent Slotted ALOHA (s-ALOHA) system 
with the aim of estimating the number of active devices in 
a slot. The FASA scheme is shown to be an effective and 
stable s-ALOHA scheme suitable for event-driven M2M 
communications and other systems characterized by bursty 
traffic. However, the scheme also suffers from high-access 
delay and congestion when different classes of M2M devices 
communicate with different probabilities, thereby lowering 
system throughput because it is limited to event-driven M2M 
communications.

In [19], a Q-learning-based RACH (QL-RACH) access 
scheme was introduced to lower collisions among M2M de-
vices. The QL-RACH scheme uses an intelligent slot assign-
ment mechanism to avoid collisions between M2M devices. It 
allows M2M and H2H devices to share RACH resources. The 
devices are categorized into two groups: learning M2M and 
non-learning H2H. The learning M2M devices used the QL-
RACH access scheme while the non-learning H2H devices 
maintained the conventional s-ALOHA RACH (SA-RACH) 
scheme. The QL-RACH scheme significantly reduces col-
lisions between the M2M devices, but the RACH through-
put ultimately collapses owing to collisions resulting from 
the disturbance coming from the uncontrolled H2H traffic at 
high-load levels. In addition, slots may be wasted when the 
mean RACH request rate is higher than M2M frame time. 
Furthermore, since every M2M device maintains a Q-value 
for each slot in the M2M frame to record transmission history 
in consecutive frames, the mechanism is energy inefficient 
for battery-limited M2M devices.

A frame-based back-off QL-RACH (FB-QL-RACH) 
scheme was proposed as a modification of QL-RACH in 
[20]. The scheme lowers the probability of collision between 
H2H and M2M devices when sharing the same frame for 
both the initial access and the back-off. The scheme also 
minimizes the slot wastage introduced by the M2M back-off 
in the QL-RACH scheme. The scheme enhances the RACH 
throughput performance of QL-RACH because the effect 
of M2M back-off is eliminated. The challenges presented 
by RL-based and non-RL-based schemes were resolved by 
[18], where a priority-based adaptive access barring scheme 
for M2M communications in LTE networks was developed 
using LA to support different M2M priority classes during 
the resource allocation procedure. The scheme dynamically 
assigns RA resources to different M2M device classes based 
on specific priorities and demands. In addition, the scheme 
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fine-tunes the barring factor for each class to control the 
possible overload. This scheme minimizes access delay 
and resource wastage, but causes poor QoS when consid-
ering both H2H and M2M devices. To resolve the chal-
lenges brought about by the effect of the penalty factor in 
QL-RACH, LA was used to classify M2M according to 
QoS classes, thereby producing an LA-based QL-RACH 
(LA-QL-RACH) access scheme for cellular M2M commu-
nications, as discussed in [22]. The scheme includes a mech-
anism to remove the excessive punishment experienced by 
M2M devices by regulating the use of a penalty factor in the 
QL-RACH scheme. It classifies M2M devices according to 
three QoS classes and assigns RACH resources on demand. 
The classification minimizes the level of interaction and col-
lision between the M2M and H2H devices without forcing 
the M2M into another Q-learning process, thereby resolving 
the problem of the disturbance from the non-learning H2H 
devices. Although the scheme enhanced RACH throughput 
and reduced the end-to-end access delay, it was restricted to 
the control of Q-learning penalty administration without pri-
oritizing the cellular M2M traffic.

None of the papers mentioned have employed a combi-
nation of PLA and Q-learning to improve the QoS perfor-
mance of cellular-based M2M. Therefore, in this study, PLA 
and Q-learning are used together to develop a PLA approach 
to enhance the Q-learning random access scheme (PLA-
QL-RACH) for cellular M2M communications. This is pos-
sible by employing a PLA technique to improve the RACH 
throughput performance of QL-RACH and eliminate the ex-
cessive punishment suffered by M2M devices.

3  |   SYSTEM MODEL

3.1  |  RA procedure in LTE

In LTE, the first step of the RA procedure is for the user equip-
ment (UE) to connect to the network through the RACH in an 
uplink transmission mode. The RA procedure is performed 
either in a contention-free or contention-based manner. In a 
contention-free scenario, the eNB assigns a unique preamble 
to a particular user, guaranteeing its access to the network, 
as in the case of handover. In contrast, in a contention-based 
approach, the individual UE initiates the access request. The 
contention-based mode of the RA procedure is the most ap-
propriate for cellular M2M communication. The preambles 
are randomly selected by the users through the RA slots ac-
cording to the four RA steps, as presented in [16,17].

The structure of a cell in LTE consists of up to 64 assigned 
preambles, some of which are reserved for contention-free 
access while the remaining are made available for contention-
based RA [17]. The LTE frame structures and modes of op-
eration are described in detail in [16]. RACH collision occurs 

if one preamble is selected simultaneously by more than one 
M2M device in the same RA slot [16].

3.2  |  Q-learning and LA

Q-learning is an off-policy or model-free RL algorithm that 
seeks to acquire a policy that maximizes the whole reward 
[21]. The algorithm searches for the optimal action to take 
at any given instant. It is considered to be off policy because 
the Q-learning function learns from actions that are outside 
the present policy. It is viewed as model free because it does 
not require a model of the environment, and it can handle 
problems with stochastic transitions and rewards, without re-
quiring adaptation [21]. LA is equally a RL model that is em-
ployed in many applications that involve adaptive cognitive 
processes. It is seen as a self-operating learning model with 
the power to work in an environment with unknown charac-
teristics. LA is analogous to an automaton that enhances its 
functionality by obtaining knowledge of the behavior of the 
random environment [30]. It employs the knowledge gained 
previously for future cognitive processes. The response of 
the environment to the chosen LA action comes as feed-
back, which is either a reward or penalty. With the help of 
the feedback, the choice of probability of subsequent actions 
is updated. P-Model LA is employed in this work which in-
cludes a set of environmental responses that take only the 
binary values of 1 and 0, respectively, for penalty and reward 
[18,22].

3.3  |  LA-QL system model

We assume that one RA slot occurs in a cycle and 50 pream-
bles are earmarked in each RA slot for use by the three prior-
ity classes. Additionally, the M2M devices are presumed to 
be spread within an eNB coverage area in a unit cell of an 
LTE network, each having applications with different priori-
ties and QoS requirements, as shown in Figure 1. Each M2M 
device is initiated within the interval [0, τs] with probability 
that of beta distribution, as presented in [31].

As presented in [30], LA is proven to be effective in guar-
anteeing adaptation to systems operating in environments 
with changing or unknown characteristics. The adaptation 
feature is used in our simulation, as indicated in Figure  1, 
where a number of M2M devices are made to contend in an 
RA cycle.

The quantity of contending M2M devices in each cycle is 
unknown and depends on the stochastic arrival process of RA 
requests of the UE. However, in this work, the UEs that repre-
sent M2M in this work attempt to access the network based on 
priorities and demands for uplink resources [32,33]. PLA is 
the proposed scheme developed in this work, which classifies 
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M2M devices in line with three priority classes: High (H), 
Medium (M), and Low (L), where x ∈ {H, M, L}. The scheme 
fine-tunes the RACH resource allocation probability (ηx(t)), 
LA feedback (cx(t)), and ACB parameter (αx(t)) for each pri-
ority class x and within the tth LA cycle. The parameters are 
adjusted to control any possible overload or collision for a 
particular priority class when the number of M2M devices 
contending for access from that class is higher or lower than 
the resources allocated. The number of contending M2M de-
vices in each priority class is tracked, and RACH resources 
are allocated according to prioritization rules.
The rules are as follows:

•	 Each priority class uses a certain quantity of available re-
sources, which is determined based on its priority class and 
average requirement.

•	 The unused resources that have already been allocated to 
a particular priority class are proportionally allocated to 
other priority classes demanding resources.

According to the rules, the steady-state performance of 
the technique is achieved as follows:

1.	 When the quantity of M2M devices demanding access 
from a priority class is below the maximum RACH 
resources available for that class, then the number of 
allocated preambles to class x, (Mx(t)), is obtained as 
follows:

where kx(t) is the number of M2M devices for priority class x.

2.	 When the quantity of M2M devices contending for ac-
cess from a priority class is above the maximum RACH 
resources available for that class, then all the resources 
are used by the devices belonging to this class and the 
ACB parameter is adjusted as follows:

(1)Mx(t) = kx(t),

F I G U R E  1   Machine-to-machine devices with different priorities in LTE networks (adopted from [18]) 

Cycle

τs

LA

L

LA

H

LA

M
LA

L

LA

M

LA

H
LA

M

LA

L

Learning automata

Environment

H

M

L

High priority

Medium priority

Low priority

Allocated preambles 
for high priority

Allocated preambles 
for medium priority

Allocated preambles 
for low priority
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Each M2M device from priority class x participates in the 
RA procedure according to (2) and randomly selects a preamble 
with probability computed as

The probability that a definite preamble is picked by an 
M2M device from priority class x is given by

The operation of the proposed PLA-QL-RACH scheme, 
which is based on the model presented above, is provided in 
detail in Section 4.

4  |   PLA-QL -RACH ACCESS 
SCHEME

In this section, a modification of the QL-RACH scheme, 
called PLA-QL-RACH, is described. To provide an appropri-
ate context, the shortcomings of the QL-RACH scheme are 
initially presented. QL-RACH uses Q-learning to regulate 
M2M devices while coexisting with H2H devices in sharing 
the RACH channel of a cellular network. These devices are 
classified into two groups: learning M2M and non-learning 
H2H. Coexisting together in a combined RACH access 
scheme, the learning M2M devices go through the QL-RACH 
access scheme while the non-learning H2H devices retain the 
conventional s-ALOHA RACH (SA-RACH) access scheme. 
The learning was realized by designing a virtual M2M frame 
with a size equal to the number of M2M devices. The ran-
dom effect of H2H traffic as it approaches the s-ALOHA 
capacity hinders the performance of the QL-RACH scheme. 
As the H2H traffic load approaches the s-ALOHA capacity, 
the probability of collisions between the H2H and M2M de-
vices increases, leading to RACH throughput collapse. The 
collisions are caused by the failure to prioritize M2M traffic 
when coexisting with H2H traffic, and excessive reward and 
punishment.

To address the aforementioned problem, a PLA-QL-
RACH access scheme is proposed. First, the technique con-
siders the probability that a preamble remains idle, as given 
by:

and the probability that the preamble is successfully used by a 
device is

while the probability that the preamble suffers collision is given 
by

Information on the number of idle, successful, and col-
lided preambles at the end of each LA cycle is provided to the 
eNB by the PLA technique. Although the eNB is not aware of 
the number of M2M devices demanding access from priority 
classes in each cycle, it is conscious of the access attempt from 
an M2M device based on the probability that an attempted 
preamble converges per state. The convergence of a preamble 
in the idle, successful, and collision states is compared with 
the maximum throughput achieved through s-ALOHA of e−1,  
2e−1, and 1 − 2e−1, respectively. This is achieved through the 
adjustment of ηx(t) and αx(t) [18,29], where feedback is also 
produced. The feedback, which is collision dependent, avoids 
the conventional RA attempt retrials, which leads to RACH 
overload and throughput collapse. Instead, it triggers a re-
source allocation procedure that guarantees a collision-free 
RA procedure and better throughput with lower delay. This 
behavior is further explained when the feedback is received 
by the LAs of all the activated M2M devices for each class 
and takes a binary value as reward or punishment. It can be 
presented in the form of an array as

where cH(t), cM(t), and cL(t) represent feedback for the high-, 
medium-, and low-priority classes, respectively. Within a [0 τs] 
interval, each active M2M device transmits a small data packet 
to the eNB during the RA procedure. The activation interval τs 
is distributed into Zs cycles having two identical parts: the first 
part is used for transmitting the preambles, and the second part 
for transmitting Message 3 of the RA procedure. At the end of 
each cycle, the eNB monitors Pcoll

x
 for class x and is generated 

cx(t) by comparing it with the expected value of g = 1 − 2e−1 
[18,22], computed as

The eNB communicates the generated feedback cx(t) at 
the end of each cycle through the downlink broadcast chan-
nel. Whenever Pcoll

x
(t) ≥ g, a unit feedback is produced to 

raise ηx(t) and lower αx(t) as new input to the PLA-QL-RACH 

(2)�x(t) =
Mx(t)

kx(t)
.

(3)P =
1

Mx(t)
.

(4)Pm
x

(t) =
�x(t)

Mx(t)
.

(5)Pidle
x

(t) =
(
1 − Pm

x
(t)
)kx(t)

,

(6)Psucc
x

(t) =

(
kx(t)

1

)
Pm

x
(t)

(
1 − Pm

x
(t)
)kx(t)−1

,

(7)Pcoll
x

(t) = 1 − kx(t)Pm
x

(t)
(
1 − Pm

x
(t)
)kx(t)−1

−
(
1 − Pm

x
(t)
)kx(t)

.

(8)c(t) =
(
cH(t), cM(t), cL(t)

)
,

(9)cx(t) =

{
0 if Pcoll

x
(t)<g

1 if Pcoll
x

(t)≥g
.
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scheme. Furthermore, when Pcoll
x

(t) < g, a null feedback is 
generated, which results in a decrease in ηx(t) and an increase 
in αx(t). In steady-state conditions, when Pcoll

x
(t) = g, two sce-

narios that are both determined by the feedback occur:

1.	 The PLA-QL-RACH scheme stabilizes when ηx(t) is 
updated as follows:

where � is the Q-learning rate; 0 < 𝜀1 < Ωx − 𝜂x(t); 
0 < 𝜀2 < 𝜂x(t) − 𝜃1; and �1 is a very small value that guarantees 
a positive non-zero percentage of resources allocated per class 
even when that class has no access request. Moreover, Ωx is the 
maximum value of �x(t), which is statically assigned by the eNB. 
The eNB communicates this value to the M2M devices at the be-
ginning of the activation interval through the system information 
blocks (SIBs). Furthermore, αx(t) is updated as follows:

where �2 is a small value and �1 and �2 are the LA learning vari-
ables that are chosen in such a way that ηx(t) and αx(t) converge 
to the optimal value asymptotically. The values of ��1 and ��2 
respectively determine the estimation accuracy and the conver-
gence speed of the automaton, and hence the stability of the 
PLA-QL-RACH scheme.

2.	 The outcome of the LA feedback determines the penalty 
factor (R(t)) in the QL-RACH scheme to regulate the 
Q-learning punishment technique at time t, as follows:

The second scenario is necessary to eliminate the chances 
of pushing the M2M devices into another Q-learning process 
using the updated Q-value from QL-RACH, as follows:

with

where c′
x
(t) is the steady-state LA feedback.

The prioritization of the M2M traffic by the PLA 
technique eliminates the RACH collisions and controls 
the QL-RACH reward and punishment technique using 
Algorithm 1.

A flow chart of the algorithm is presented in Figure 2.

5  |   PERFORMANCE EVALUATION

5.1  |  Simulation scenario

Simulation was used to assess the performance of the PLA-
QL-RACH scheme using MATLAB. The scheme, which is a 
modification of the QL-RACH scheme, was evaluated using 
the same simulation parameters as in [19].

(10)�x(t + 1) =

⎧
⎪⎨⎪⎩

�x(t)+��1 if cx(t)=1

�x(t)−��2 if cx(t)=0 and �x(t)=1 ,

(11)�x(t + 1) =

⎧⎪⎨⎪⎩

�x(t)+��1 if cx(t)=0

�x(t)−��2 if cx(t)=1 and �x(t)=Ωx ,

(12)R(t) =

{
+1 if cx(t)=0

−1 if cx(t)=1
.

(13)Q� = (1 − �)Q + �c�
x
(t).

(14)c�
x
(t) = R(t),

1: for every device RACH contest do
2:    Route H2H via SA-RACH

3:    Route M2M via QL-RACH

4: end for
5: if M2M collision occurs in QL-RACH then
6:    Classify the M2M devices 

else
7:    Route the collided devices via PLA-QL-RACH according 

to their classes

8: end if
9: for every M2M device using PLA-QL-RACH to contest RACH

resources do
10:    Calculate probability of collision ( ) and compare it with Ƥ ( )

the expected value g

11:    Calculate steady state LA feedback (         ) value of 0 / 1ϲ ′(t)

12: end for
13: If  probability of collision is less than the expected value and LA

feedback is 0, then 

14:    Calculate ACB parameter ( )

15:    Decrease RACH resource allocation probability ( ) using( )

(11) when ACB parameter is 1.

16:    Update ACB parameter using (11)

17:    Reward QL penalty factor (R(t)) by 1 using (13)

18: else if LA feedback is 1, then
19:    Calculate ACB parameter (         )

20:    Update RACH resource allocation probability ( ) using (10)( )

21:    Decease ACB parameter using (11) when RACH resource 

allocation probability reaches maximum value ( )

22:    Penalize QL penalty factor (R(t)) by −1 using (13) 

23: end if

ALGORITHM 1    PLA-QL-RACH ALGORITHM
IMPLEMENTATION ON COLLIDED M2M DEVICES
WHILE COEXISTING WITH H2H DEVICES DURING
A RACH CONTEST. M2M, MACHINE-TO-MACHINE;
H2H, HUMAN-TO-HUMAN; RACH, RANDOM ACCESS
CHANNEL; ACB, ACCESS CLASS BARRING; QL,
Q-LEARNING
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A fixed allocation of resources was implemented at this 
stage such that the values of ΩH, ΩM, and ΩL were set to 0.5, 
0.3, and 0.2, as 50%, 30%, and 20% ratios, respectively. In the 
fixed allocation approach, a fixed number of preambles are pre-
allocated to each class statically by the eNB according to the 
priority, and the average number of M2M devices attempting to 
access RACH resources in that class is within a τs interval. The 
choice of preamble allocation ratios for the three traffic classes 
is restricted by the fact that they should sum to 1 and provide 
effective prioritization of resources among the three classes.

5.2  |  Simulation parameters

Table 1 present details of the parameters used in this simula-
tion, based on the LTE standard.

In Table 1, the PRACH configuration index of 12 was se-
lected to determine the PRACH preamble type and PRACH 
preamble timing. The index also shows which frame and sub-
frame M2M devices are permitted to transmit a PRACH pre-
amble. In each frame of 10 ms, there are 10 sub-fames of 1 ms 
each, and each sub-frame has two slots of 0.5 ms. In addition, 
a learning rate of 0.01, which determines the speed of the con-
vergence of the QL-RACH was set to ensure that it is within 
the same low value as the penalty factor. Additionally, an ACB 
time (ac-Barring time) of 28 ms was used as the back-off pe-
riod, which indicates when retransmission will occur after 

collision has occurred. The values of the RACH allocation 
probability (ηx) were selected as the ratio of the pre-allocated 
preambles per class x for use by all M2M devices.

5.3  |  Simulation results and discussion

In this section, the performance of the proposed PLA-QL-
RACH scheme is evaluated along with five other RACH 
access schemes: SA-RACH [29], QL-RACH [19], FB-QL-
RACH [20], Framed-ALOHA for QL-RACH (FA-QL-
RACH) [21], and LA-QL-RACH [22]. The schemes are 
evaluated in terms of throughput and average access delay by 
means of simulation. The reporting procedure used by [19] 

F I G U R E  2   Proposed PLA-QL-RACH 
scheme flow chart 

T A B L E  1   Simulation parameters

Parameter Value

PRACH configuration index 12

RA slot period 1 ms, 1 cycle

1 RA slot 50 preambles

Preamble format duration 1 ms

Back-off period/AC-Barring Time 28 ms

Number of allowed retransmissions 7

RACH allocation probability (Ω
H
, Ω

M
, Ω

L
) 0.5, 0.3, 0.2

Learning rate 0.01
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was adopted in presenting our result. The procedure con-
siders the s-ALOHA throughput capacity (e−1) in Erlangs 
(E) at both the upper and lower limits as a threshold for 
traffic prediction. The Erlang is a unit of traffic density in a 
telecommunication system. One Erlang is the equivalent of 
one call (including call attempts and holding time) in a spe-
cific channel for 3600 s (in an hour). An upper limit of 0.3 
E is selected because it is closer to the load limit, whereas 
a lower limit of 0.1 E is chosen as it is away from the load 
limit. These limits are assumed to be the average peak-hour 
load generated by H2H devices during their interaction with 
M2M devices and are used as a measure of RACH stabil-
ity. The effect of the proposed PLA-QL-RACH scheme is 
shown by carefully assessing its delay performance and 
comparing its RACH throughput with the existing schemes. 
Figure 3 shows the RACH throughput performance of the 
proposed PLA-QL-RACH scheme at the M2M upper limit 
with H2H traffic fixed closer to the load limit (0.3 E). When 
the generated traffic is above the s-ALOHA capacity (0.368 
E), it indicates that the overall total traffic comprises the 
fixed H2H traffic and a variable but additional M2M traffic 
load.

Figure 3 demonstrates that the schemes exhibit identical 
performance from 0.3 E to 0.4 E because the generated traf-
fic is below the s-ALOHA capacity. As the generated traffic 
rises from 0.4 E to 1.0 E, the s-ALOHA RACH scheme per-
formance starts to decline, whereas the QL-RACH scheme 
maintains its channel stability as it approaches the load limit. 
However, above the load limit, the proposed PLA-QL-RACH 
is on par with the LA-QL-RACH scheme but performs bet-
ter than the other compared schemes in terms of the RACH 
throughput. Furthermore, Figure 3 demonstrates that the pro-
posed scheme is stable at 1.0 E with 47% RACH throughput 
at steady state. Consequently, above the s-ALOHA capacity, 
the RACH throughput remains at 0.47 E for the proposed 
PLA-QL-RACH scheme, which is 17% higher than that of 
the FB-QL-RACH scheme and 7% better than the FA-QL-
RACH scheme.

Figure  4 illustrates the throughput comparison of the 
schemes at the M2M lower limit. At the lower limit, the H2H 
traffic is set away from the load limit (0.1 E), which is well 
below the s-ALOHA capacity. Figure  4 shows that all six 

schemes exhibit similar behavior from 0.1 E to approximately 
0.3 E because the generated traffic within this range is below 
the s-ALOHA capacity. As the generated traffic approaches 
0.368 E (s-ALOHA capacity), the s-ALOHA RACH scheme 
starts to decline as it is unable to support additional traffic, 
unlike the other schemes that maintain identical behavior up 
to 0.5 E. The figure also shows that all the other schemes 
exhibit similar behavior from 0.5 E to 0.7 E, except the QL-
RACH scheme, which falls at 0.6 E due to the random ef-
fect of the H2H traffic. Additionally, the figure demonstrates 
that the behavior of the FB-QL-RACH, the LA-QL-RACH, 
and the proposed PLA-QL-RACH schemes are similar from 
0.7 E to 0.8 E. However, from 0.8 E to 0.9 E, the proposed 
scheme remains on par with the LA-QL-RACH but outper-
forms the FB-QL-RACH scheme owing to the prioritization 
of M2M traffic. Hence, below the s-ALOHA capacity limit, 
the RACH throughput sits at 1.0 E, for PLA-QL-RACH and 
is 10% higher than that of FB-QL-RACH and 19% better than 
the FA-QL-RACH scheme. The recorded enhancement in the 
throughput performance of the PLA-QL-RACH scheme re-
sults from the influence of the prioritization (PLA) technique 
on QL-RACH.

Figure 5 shows the RACH throughput comparison per pri-
ority class against the M2M upper limit with the H2H traffic 
set closer to the load limit. The analysis of the RACH through-
put per priority class illustrates the performance of each class, 
how it responds to the fixed allocation of resources, and how 
fast the scheme converges to steady state. In Figure 5, it can 
be seen that the RACH throughput performance at 1.0 E for 
the proposed scheme is 19.7% higher for the H priority class, 
11.9% higher for the M priority class, and 8.1% higher for 
the L priority class when compared with the LA-QL-RACH 
scheme. This improvement was recorded because of the im-
pact of the PLA technique employed by the proposed scheme, 
which enhances the speed of learning convergence over LA-
QL-RACH, which was limited to categorizing M2M devices 
without prioritizing them. A similar trend is observed in 
Figure 6, which illustrates the RACH throughput comparison 
per priority class for the M2M lower limit when the H2H traf-
fic is fixed away from the load limit.

Figure 6 indicates that when the generated traffic is below 
the s-ALOHA capacity, the RACH throughput performance 

F I G U R E  3   Proposed PLA-QL-RACH throughput comparison—
M2M lower limit (H2H = 0.1E) 
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of each priority class is proportional to the fixed allocated 
resources. It is shown that at 1.0 E, the throughput perfor-
mance of the PLA-QL-RACH scheme is 35.6% higher for the 
H priority class, 21.3% higher for the M priority class, and 
14.8% higher for the L priority class when compared with the 
LA-QL-RACH scheme. This specifies that the proportionate 
distribution and allocation of resources to the classes agrees 
with their respective priorities and QoS demand, which is 
possible because of the effect of collision elimination and 
penalty factor regulation on QL-RACH.

Figure 7 presents the average end-to-end delay compar-
ison of the schemes at the M2M upper limit when the H2H 
traffic is set closer to the load limit (0.3 E). It is observed 
that the average end-to-end delay experienced by the pro-
posed PLA-QL-RACH scheme is on par with the LA-QL-
RACH scheme but 79% lower than that of FB-QL-RACH 
and 21% lower than the FA-QL-RACH scheme. Up to 0.6 E 
of generated traffic, the effect of the continuous regulation 
of the QL-RACH penalty factor is insignificant. However, 
as the generated traffic rises from 0.6 E to 1.0 E, the en-
hancement in the end-to-end delay of the proposed PLA-
QL-RACH scheme compared to the previous schemes is 
witnessed. The enhancement is achieved by the continuous 
regulation of the QL-RACH penalty factor, which reduces 
the repetitive collisions experienced in the dedicated M2M 
slots.

Additionally, Figure  8 shows the average end-to-end 
delay comparison of the schemes at the M2M lower limit 
when the H2H traffic is fixed away from the load limit (0.1 
E). It is observed that the proposed PLA-QL-RACH has a 
minimal impact on the LA-QL-RACH scheme but offers 

20% lower delay than FB-QL-RACH and 22% lower delay 
than the FA-QL-RACH scheme. The average end-to-end 
delay performance of the schemes remains identical from 
0.1 E to 0.5 E of the generated traffic when the H2H traf-
fic is set below the s-ALOHA capacity. This is possible 
because the probability of collision is normally very low 
below the s-ALOHA capacity. As the generated traffic in-
creases from 0.5 E to 1.0 E, the average end-to-end delay 
of the proposed PLA-QL-RACH scheme appears lower 
than all the previous schemes. This behavior is attained be-
cause of the absence of collisions resulting from the low 
level of contention at the lower levels of generated traffic, 
in which 8 out of 10 M2M transmission attempts are suc-
cessful. Furthermore, the average end-to-end delay com-
parison per device RACH access request for the proposed 
PLA-QL-RACH and LA-QL-RACH schemes is illustrated 
in Figure 9.

In Figure 9, it is observed that at 15 000 RACH access 
requests, the average delay experienced by the PLA-QL-
RACH scheme is 29% lower than that of LA-QL-RACH 
for the H priority class. Similarly, for the M priority class, 
the proposed scheme attains an average delay of 6.7 cy-
cles, which is 17% lower than that of the LA-QL-RACH 
scheme. In contrast, for the L priority class, the proposed 
scheme reached a steady-state average delay of 8.6 cycles, 
which is 12% lower than the 9.75 cycles recorded by the 
LA-QL-RACH at 15 000 RACH requests. The lower delay 
cycles recorded by the PLA-QL-RACH scheme with re-
spect to the LA-QL-RACH scheme represent how quickly 
the scheme reached its stability based on training comple-
tion and learning convergence. Furthermore, it is shown 

F I G U R E  5   Proposed PLA-QL-RACH throughput comparison 
per priority class—M2M upper limit 
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F I G U R E  6   Proposed PLA-QL-RACH throughput comparison 
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F I G U R E  7   Proposed PLA-QL-RACH average end-to-end delay 
comparison—M2M upper limit 
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F I G U R E  8   Proposed PLA-QL-RACH average end-to-end delay 
comparison—M2M lower limit (H2H = 0.1E) 
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that at steady state, the higher the priority, the lower the 
access delay, which is due to the effect of prioritization, 
proportionate distribution, and allocation of resources. 
Consequently, the result illustrates that the average access 
delay for each priority class depends on the percentage of 
resources available to that class, as each class takes re-
sources from the maximum RACH resources assigned to 
it. Additionally, when the access requests from a priority 
class are treated, the remaining free RACH resources for 
this class are assigned proportionally to the other classes in 
a collision-free manner. Therefore, the delay performance 
of the proposed PLA-QL-RACH scheme is improved be-
cause at steady state, there are no collisions at the lower 
levels of generated traffic owing to the minimal contention. 
Figure  9 further shows that variations around the pream-
ble allocation ratios do not have any impact on the rela-
tive performance characteristics of the different schemes. 
However, they only subtly change the absolute values, and 
these values effectively prioritize the traffic and provide 
distinct performance levels for the high-, medium-, and 
low-priority classes.

6  |   CONCLUSION

In this paper, the PLA-QL-RACH scheme was proposed to 
improve the performance of the QL-RACH access scheme. 
The novel technique classifies M2M devices according to 
three QoS priority classes and assigns RACH resources 
based on their respective demands. The classification mini-
mizes the level of interaction and collision between the 
M2M and H2H devices without pushing the M2M into an-
other Q-learning process. In this scheme, the s-ALOHA ca-
pacity (e−1) has been used as an indicator of the preamble 
utilization status, which is either idle, successful, or colli-
sion. The collision state determines the response of the LA 
through feedback, which regulates the resource allocation 
process and the use of a penalty factor in QL-RACH. The 
simulation results show that at 1.0 E, the proposed PLA-
QL-RACH converges faster than the LA-QL-RACH scheme 
and achieves an RACH throughput performance that is 10% 
higher than that of FA-QL-RACH and 19% higher than that 

of the FB-QL-RACH scheme. Overall, the proposed scheme 
improves the RACH throughput to 82% and access delay to 
79% with a speed of convergence that is faster than that of 
existing schemes.
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