
1  |   INTRODUCTION

Open data refer to data that anyone can easily access, (re)
use, and redistribute over the Internet without particular re-
strictions. Representative data platforms for distributing such
open data include the Comprehensive Knowledge Archive
Network (CKAN) [1], Open Government Platform (OGPL)
[2], and Socrata [3]. CKAN is an open-data distribution plat-
form used in more than 40 countries, including the United

Kingdom, the United States, and Canada. It is a data manage-
ment project initiated by the Open Knowledge Foundation
(OKF), a nonprofit foundation based on the United Kingdom.
In addition to basic functions, such as data registration, pub-
lication, and statistics, CKAN supports specialized func-
tions, such as visualization and API extraction, by combining
with other open sources, including Drupal [4]. CKAN sup-
ports this specialized function under the name Extension.
Representative extensions include Harvest for data collection,

Received: 4 August 2020  |  Revised: 23 December 2020  |  Accepted: 22 January 2021

DOI: 10.4218/etrij.2020-0298

O R I G I N A L A R T I C L E

Comprehensive Knowledge Archive Network harvester
improvement for efficient open-data collection and management

Dasol Kim1   | Myeong-Seon Gil1  | Minh Chau Nguyen2  | Heesun Won2  |
Yang-Sae Moon1

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

1Department of Computer Science and
Engineering, Interdisciplinary Graduate
Program in Medical Bigdata Convergence,
Kangwon National University, Chuncheon,
Rep. of Korea
2CybreBrain Section, Future and Basic
Technology Research Division, Electronics
and Telecommunications Research Institute,
Daejeon, Rep. of Korea

Correspondence
Yang-Sae Moon, Kangwon National
University, Chuncheon, Rep. of Korea.
Email: ysmoon@kangwon.ac.kr

Funding information
This work was partly supported by
Institute of Information & communications
Technology Planning & evaluation
(IITP) grant funded by the Korea
government(MSIT) (No. 2020-0-00077,
Core Technology Development for
Intelligently Searching and Utilizing Big
Data based on DataMap) and the National
Research Foundation of Korea(NRF) grant
funded by the Korea government (MSIT).
(No. 2019R1A2C1085311).

Abstract
With the recent increase in data disclosure, the Comprehensive Knowledge Archive
Network (CKAN), which is an open-source data distribution platform, is drawing
much attention. CKAN is used together with additional extensions, such as Datastore
and Datapusher for data management and Harvest and DCAT for data collection.
This study derives the problems of CKAN itself and Harvest Extension. First, CKAN
causes two problems of data inconsistency and storage space waste for data deletion.
Second, Harvest Extension causes three additional problems, namely source deletion
that deletes only sources without deleting data themselves, job stop that cannot delete
job during data collection, and service interruption that cannot provide service, even
if data exist. Based on these observations, we propose herein an improved CKAN
that provides a new deletion function solving data inconsistency and storage space
waste problems. In addition, we present an improved Harvest Extension solving
three problems of the legacy Harvest Extension. We verify the correctness and the
usefulness of the improved CKAN and Harvest Extension functions through actual
implementation and extensive experiments.

K E Y W O R D S

CKAN, CKAN harvester, DCAT, harvest extension, open data

 | wileyonlinelibrary.com/journal/etrijETRI Journal. 2021;43(5):835–855. 835

www.wileyonlinelibrary.com/journal/etrij
https://orcid.org/0000-0003-4389-5070
mailto:﻿
https://orcid.org/0000-0002-2396-0405
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:ysmoon@kangwon.ac.kr

KIM et al.

Datastore, which is an additional database, for data preview
and visualization, and Datapusher for automatically upload-
ing data to the Datastore.

This study derives the problems of CKAN itself and
Harvest Extension, which we frequently meet in the prac-
tical use of CKAN and propose efficient solutions to
these problems. First, we present two problems of CKAN,
namely data inconsistency and storage space waste, which
occur during resource deletion. Data inconsistency means
information inconsistency between the metadata and the
actual data store. More specifically, even though we de-
lete the metadata in CKAN, the data store still maintains
the corresponding data source files. Storage space waste
is caused by an increase in data that are not accessible due
to data inconsistency. CKAN has no ability to delete the
actual data file store; thus, the storage space waste can-
not be solved. Next, we derive three problems of Harvest
Extension: source deletion, job stop, and service interrup-
tion. First, the source deletion problem occurs from the
Harvest Extension deleting source information only from
the table that stores dataset information, but not deleting
much information related to the actual source. This causes
a problem of unnecessarily storing data related to the de-
leted source. Second, the job stop problem comes from
the harvesting job that cannot be stopped or deleted once
executed. Job stop in the existing Harvest Extension only
changes the relevant state, but it does not stop or delete
the actual job; thus, its functionality is incomplete. Third,
the service interruption problem is that, if the data source
platform stops the service, we cannot use the data already
even harvested, because existing harvesting collects only
metadata and not actual data. This is a major limitation of
the data distribution function.

In other commercial data platforms, including Junar [5],
a manager or a team-in-charge controls these issues with the
data platform. These experts are generally trying to solve the
abovementioned problems, which occur in the open-source
data platform and are particularly troubling platform admin-
istrators or users who have chosen CKAN. CKAN allows
platform administrators to solve some problems themselves.
First, the problems of inconsistency and storage waste must
be addressed by the platform administrators. Next, the source
deletion problem related to the Harvest Extension still limits
user autonomy, and the job stop problem persists with data
remaining in the queue. Lastly, the service interruption is not
considered as a critical problem, because it is for data users
rather than platform administrators.

This study designs and implements the actual deletion
function in the data store to solve the data inconsistency and
storage space waste problems of CKAN. We specifically
present two scenarios of deleting resources and propose new
delete functions for each scenario. Scenario 1 is when a data
provider deletes resources individually. We improve CKAN,

such that when the resource is deleted, we not only change
its metadata to the deleted state but also remove the actual
files from Filestore and Datastore if the resource has the files.
Scenario 2 is when a data provider deletes an entire data-
set. Currently, when deleting a dataset, CKAN deletes all re-
source information of the dataset from the metadata only. We
improve CKAN to obtain the deleted resource information
from the dataset and remove the actually stored files from
Filestore and Datastore. The proposed CKAN can solve data
inconsistency and storage space waste problems by applying
the new delete functions for the two scenarios.

We completely redesign and implement the relevant func-
tions to solve the three problems of Harvest Extension. First,
we provide an option to delete the relevant data in addition
to the existing deletion function to resolve the source dele-
tion problem. This delete option deletes not only the source
information, but also all related data from more than 20 ta-
bles related to that source. Second, we provide an additional
function for deleting a job in addition to the existing job state
change to solve the job stop problem. That is, for a job stop
request, we improve the function to stop the job by deleting
the data remaining in the queue after changing the job state.
Third, we improve Harvest Extension to expand the existing
method of collecting metadata only and solve the service
interruption problem, such that the actual data file can be
downloaded along with the metadata. This allows continuous
service to existing users for data that have already been col-
lected, even if the data source is out of service.

This study improves the CKAN utilization by solving the
data inconsistency and storage space waste problems of
CKAN itself and by solving the source deletion, job stop, and
service interruption problems of Harvest Extension. To this
end, we present in detail the design and implementation of
the solution to each problem and provide it as an open source.1
In addition, we show the operation process before and after
applying each solution through actual experiments and its
usefulness. The improvements herein also apply to the Smart
Open Data as a Service (SODAS) project2 of the Electronics
and Telecommunications Research Institute (ETRI),3 con-
tributing to the expansion of international standard-based
open-data platforms. We believe that the improvement pre-
sented in this paper is excellent for the enhancement of the
status of CKAN as an open-source platform by enhancing the
completeness of CKAN and Harvest Extension.

The rest of the paper is organized as follows: Section 2
describes the open data and CKAN as the background of

 1The source code for the proposed CKAN and Harvest Extension is
available at https://github.com/dasso​lkim.

 2The international standardization-based open-data platform through the
SODAS project is an improvement of the content of this paper, which can
be found in (SODAS gitlab).

 3https://www.etri.re.kr/eng/main/main.etri

| 836

https://github.com/dassolkim
https://www.etri.re.kr/eng/main/main.etri

KIM et al.

this paper; Section 3 analyzes the operations of CKAN and
Harvest Extension and explains their problems; Section 4 de-
signs improvements to address those problems and describes
the implementation details; Section 5 confirms, by experi-
ment, that the solutions proposed in Section 4 work correctly;
and Section 6 finally summarizes and concludes the paper.

2  |   BACKGROUND AND RELATED
WORK

2.1  |  Open data and distribution platforms

A platform for deploying, managing, and sharing open data
has attracted much attention with the recent increase in
data disclosure. Open data refer to data that can be freely
used, reused, and redistributed by everyone. It is mainly
the disclosure of government public data for transparency,
releasing social and commerce value, and partitioning and
engagement [6]. As such, the focus is mainly on public data
disclosure. The use of open data is gradually increasing
depending on the will of governments. We call the envi-
ronment for publishing and distributing such open data the
open-data distribution platform. Among several open-data
distribution platforms [7], the most widely used is the open-
source project “CKAN.” In addition to CKAN, OGPL is
used as an open source, whereas Socrata and Junar are used
as commercial platforms.

Table 1 compares the characteristics of CKAN and other
platforms and summarizes the countries and institutions
currently in use. The most actively developed CKAN is
used as a government data portal in more than 40 countries,

including the United States, the United Kingdom, Canada,
and Australia. OGPL is an open-data platform developed by
the United States and Indian governments currently used by
Indian Government Departments. Socrata is an open-data
platform developed in the United States and currently used
as a data portal by the US federal government. The US gov-
ernment built a public data portal as Socrata in 2009, but it
switched to CKAN in 2013 and is currently operating. Similar
to the United States, Australia's data portal also initially used
other platforms, but now switched to CKAN.

CKAN [1,8] is an open-source data management solution,
which is not a file repository, but a data distribution platform
[9]. CKAN is widely used because of four main reasons.
First, it is an open-source platform. Second, it has easy fea-
tures for data management. Third, various support is avail-
able in connection with the community, and many developers
are involved. Fourth, it supports various functions for data
providers and users. Therefore, CKAN has become the most
popular open-data distribution platform widely adopted by
many governments, including the United States (data.gov),
United Kingdom (data.gov.uk), Canada (open.canada.ca),
Australia (data.gov.au), and the European Union (europ​eanda​
tapor​tal.eu) [10].

2.2  |  CKAN and CKAN extensions

CKAN uses PostgreSQL [11] for database, SQLAlchemy
[12] for object-relational mapping (ORM) [13], and Apache
Solr [14] for search engine. CKAN provides extensions to ex-
pand functionality, thereby allowing users to extend CKAN
as needed. Figure 1 shows the operation structure of CKAN

T A B L E 1   Comparison of open-data distribution platforms

Platform
Open
source Characteristics Countries of use

Comprehensive Knowledge
Archive Network (CKAN)

Yes —	Voluntarily participating developers around the world
—	Most active open-data platform
—	Use with other open sources for specialized features

40 countries including United
States, UK, Canada, and Australia

Open Government Platform
(OGPL)

Yes —	Commonly developed by US and Indian governments
—	Developed for transparency in public institutions

Indian Government Departments

Socrata No —	Excellent features such as visualization and analysis US states governments

F I G U R E 1   Operation structure
of Comprehensive Knowledge Archive
Network (CKAN) and major extensions

ExtensionsCore CKAN

Catalog
of datasets

Web
front-end API

Admin uploads
details of
datasets

Users can search, browse, and
share datasets

Harvest

Datapusher

Admin chooses
extensions

needed

Datastore

DCAT

 | 837

http://data.gov
http://data.gov.uk
http://open.canada.ca
http://data.gov.au
http://europeandataportal.eu
http://europeandataportal.eu

KIM et al.

and major extensions based on the user type. In CKAN, users
are divided into data providers and data users. Data providers
are primarily national and local governments releasing data
directly through web interfaces and APIs or collecting and
disclosing data from the outside. Collecting data from outside
is called harvesting. Data users search for the desired data
using the web interface and import the data from the CKAN
server through the API. At this time, the user can search for
the open dataset through the basic classification system pro-
vided by CKAN. The basic classification system of CKAN
includes Organization, Group, Tag, Format, and License [15].

Figure 2 shows the internal source code structure of
CKAN. Briefly describing each module, Routes define a
connection between the CKAN URL and Views that han-
dle requests and provide responses. Views use the Action
function to read and update data to handle requests and ren-
der the Jinja2 [16] template to return responses. In Views,
the Template Helper is used for the code frequently reused
or too complex to be included in the template itself. Logic
contains the most important functions, such as Actions and
Auth, which are responsible for the internal operation of the
platform. The Action's functions are provided to the outside
with API URLs of the same names. Models are responsible
for storing and retrieving objects in the PostgreSQL database
through ORM SQLAlchemy. CKAN also uses Solr, a search
engine, to exploit the customized schema considering spe-
cific search needs. In this way, the inside of CKAN is com-
posed of four layers serving as a data distribution platform.
The plug-ins on the left side of the figure represent exten-
sions for additional functions of CKAN. In addition, CKAN
provides a basic template such that developers can directly
create a new extension if there is no desired extension.

CKAN has more than 230 functions registered as exten-
sions, including visualization, document preview, custom

theme, other storage, site link, and metadata management.
Representative examples include the DCAT Extension for
linked data [17,18], CKAN harvester or DCAT [19] RDF/
JSON harvester for data collection, and DB Extension for
storage linkage to MongoDB [20] or Amazon S3 [21]. We an-
alyzed herein the following extensions related to harvesting.

•	 Datastore is an additional data store that stores the actual
resource files in database tables.

•	 Datapusher automatically uploads data to the Datastore.
•	 Harvest performs data collection between the CKAN

platforms.
•	 DCAT provides the DCAT standard plug-in for use with

CKAN.

2.3  |  Related work

Recent research on CKAN and open-data platforms include
those of Millette et al. [22] and Elmekki et al. [23] analyzed
the functions of open-data platforms from the perspective of
data users and increased the open-data usability. These stud-
ies presented novel solutions for users to more efficiently use
datasets registered in existing open-data platforms. Macedo
[24] proposed the CKAN Extension for easier data publica-
tion and management compared with the existing CKAN.
Varon-Capera et al. [25] proposed a visualization tool that
provides visual analysis to increase the CKAN data utiliza-
tion. Scholz et al. [26] proposed a CKAN plug-in that stores
actual data in HDFS by utilizing CKAN as a metadata catalog.

We perform herein a CKAN function analysis from the
perspective of data providers and users and platform adminis-
trators. Unlike that in [22,23], our analysis focuses on the most
widely used CKAN among open-data platforms. Compared

F I G U R E 2   Internal source code
structure of Comprehensive Knowledge
Archive Network (CKAN)

Plugins

ckanext-
harvest

ckanext-
dcat

Plugin n

. . .

Models

SQLAlchemy
PostgreSQL

Search
SOLR System

database Datastore

Logic

Auth Actions Business
logic

Background
tasks

Views API

JSON/
multipart

Jinja2
HTML

Data
views

Template
helpers

Routes

Internet

| 838

KIM et al.

with [24,25], we propose various solutions in the viewpoint
of data providers and platform administrators. In addition,
our method fundamentally solves the data inconsistency and
storage waste problems compared with [26]. In summary, we
present a novel solution for each platform administrator and
data provider and user to use harvesting efficiently.

3  |   FUNCTIONAL ANALYSIS OF
CKAN HARVESTING

This section analyzes the CKAN behavior, focusing on the
data collection, which is the most important function of the
open-data platform. Section 3.1 analyzes the CKAN functions
based on the user role of the open-data platform. Section 3.2
analyzes the functions of essential harvesting extensions.

3.1  |  CKAN function analysis based on
user roles

Table 2 summarizes the major functions of CKAN. It pro-
vides various functions from the dataset, resource, and user
management basically provided by the data distribution plat-
form to the metadata management of each dataset. Open-data
platform users can be divided into data providers, data users,
and platform administrators based on their roles. The CKAN
functions according to these user roles are summarized as
follows:

•	 Data providers: dataset, resource, and organization
management.

•	 Data users: faceted search, data preview, and
personalization.

•	 Platform administrators: federation and customization.

The advantage of using CKAN as a data provider is
that various functions for data disclosure and management
are available through the web interface. The data provider
can manage metadata for various datasets and resources at
his/her convenience. The metadata that should be basically
registered together with a dataset include the dataset name,
organization, and description. The provider may also se-
lect representative tags for the dataset, license information
of the open data, and whether to disclose the dataset. Other
additional inputs include provider information, administrator
information for datasets, and custom fields for entering sup-
plementary information in a key/value format.

By registering a package that is the metadata for a dataset,
we can register the resources that store the actual data for that
dataset. Resources can be registered in two ways: (a) provide
a URL such that we can access the actual file on the Internet
and (b) upload actual data files and store them in the file stor-
age. If we upload an actual resource file directly, its name
and format are automatically registered, and we can change
that information or add other descriptions. Please refer to
Appendix A for an ER diagram of the tables that store rele-
vant metadata when creating a dataset.

Next, we analyze the CKAN functions from the data user
perspective. For data users, the biggest advantage of CKAN
is the easy use of searching and exploring huge data. CKAN
provides a “faceted search” technology, such that users can
gradually narrow the search scope by applying taxonomic
filters, such as tags and formats. It also provides data pre-
view in a form familiar to the user through tables, graphs,
and maps. These data previews and visualizations can be
extended through extensions; hence, many data portals cur-
rently provide various visualization and preview functions.
Please refer to Appendix B for an example screenshot of a
Faceted Search [27].

T A B L E 2   Major functions of Comprehensive Knowledge Archive
Network (CKAN)

Function Explanation

Dataset management Creation, modification, and deletion of
datasets

Resource management Creation, modification, and deletion of
resources

User management Creation, modification, and deletion of
users

Activity stream Change management of datasets,
resources, and users

Keyword auto complete Autocomplete function of words

Translation Translation function of words

Tagging Tagging function for datasets

Grouping Group management of datasets

Follower Following function for users, datasets,
organizations, and groups

Linked data Converting metadata of dataset stored in
DB to RDF

Rest API Function access through Rest API

Authority management Access controls for each user

Search Searching function for datasets

Harvesting Collection of datasets of CKAN instances

Social Sharing of dataset information through
Facebook and Twitter

Data preview Web preview functions for structured data

Geospatial Geospatial information for datasets
presented on the map

License management License settings for each dataset

Extension Function extensions to meet user needs

Metadata customization Use of new metadata in addition to the
basic metadata

Permanent URLs Grant a permanent URL to each dataset

 | 839

KIM et al.

Finally, from the platform administrator's point of view,
the advantage of using CKAN is that it is easy to integrate and
customize with other platforms. Using CKAN, we can connect
with other CKAN networks and scale up the data portal through
data sharing. The simplest way to connect with other data por-
tals using CKAN is to collect and share open data through data
harvesting. We describe the data harvesting issue in detail in
Section 3.2.

3.2  |  Essential extensions for data harvesting

This section presents in detail the extensions related to the
data harvesting function. We first describe Datastore and
Datapusher, which are the most widely used extensions. We
next explain Harvest Extension.

Datastore is an additional DB, and unlike the System Database
that stores metadata, it stores actual data as tables. Datastore stores
structured data and supports CSV and Excel formats in CKAN.
We used Datastore because it can provide data preview in the
portal UI by storing actual data and support additional functions,
such as data search, filtering, and modification through the API
of Datastore itself. Datapusher is an extension for data loading,
which automatically loads the data into Datastore if the resource
data are in CSV or Excel format. In other words, Datapusher is an
Extension for automating Datastore.

We basically use Harvest Extension for data collection
in CKAN and DCAT extension for interconnection with the
DCAT standard. We can also use the DCAT RDF harvester
by installing Harvest Extension and adding DCAT Extension.
The CKAN harvester supports Redis [28] and RabbitMQ [29]
as the queue components. We currently mainly use Redis.

Please refer to Appendix C for an ER diagram of the tables to
be generated when Harvest Extension is added.

Figure 3 shows the CKAN harvesting process. Each step
works as follows: ① The user creates a source to perform
harvesting and requests job execution; ② the harvester
stores source information generated through API in DB
inside CKAN; ③ when the job runs, it checks the source
URL and retrieves dataset information from the source; ④
the harvester creates an object by mapping one to one with
the retrieved dataset information; ⑤ it pushes the gener-
ated job and object IDs to the queue; ⑥ when the object
ID is popped from the queue, it checks whether the object
is stored in DB and saves the timestamp; and ⑦ the object
moves to the Import phase after the verification. ⑧ In the
Import phase, the harvester requests CKAN to create and
update the dataset. ⑨ CKAN stores or updates the dataset
and the related information in DB inside CKAN. In Step 3,
the basic CKAN and DCAT RDF harvesters operate differ-
ently. The CKAN harvester uses the package_search API to
read the dataset information on the same CKAN platform.
On the contrary, the DCAT RDF harvester requests informa-
tion by attaching RDF Endpoint [30] and receives the RDF
files returned upon request. Subsequently, DCAT Extension
performs the mapping for processing in CKAN and reads the
dataset information.

4  |   IMPROVED CKAN AND
HARVESTING EXTENSIONS

In this section, we analyze the problems of the existing CKAN
and Harvest Extension and present solutions for these problems.

F I G U R E 3   Operation steps of the Comprehensive Knowledge Archive Network (CKAN) harvester

①
Create harvest
source and job

Meta
databaseGather Fetch Import

External
source

③ Read dataset
(CKAN or DCAT)

Queue(Redis)

Logic

CKAN

Logic

Model

View

HarvestModel

Harvester

② Create source

④ Send job and objects

⑧
Create

package

⑤ ⑥

⑦

⑨
Store

metadata

| 840

KIM et al.

4.1  |  Problem analysis of existing CKAN

We analyze herein the data registration and deletion pro-
cesses of the existing CKAN and present the problems
caused by these processes. Figure 4 shows the data registra-
tion process of CKAN. Each step is described as follows: ①
The data provider creates a package (ie, metadata) through
the UI; ② CKAN delivers information registered by the pro-
vider to View through the API; ③ it creates a model to store
in the actual DB using Logic API; ④ CKAN provides the
work that creates the actual dataset by referring to the model;
⑤ it checks the authentication and authorization of the user
to create the dataset; ⑥ after registering the package, CKAN
delivers the resource format to Datapusher if the resource is
registered; ⑦ it stores the metadata of the resource and re-
quests the actual files to be stored in Filestore; ⑧ it stores
the actual files in Filestore; ⑨ Datapusher uses its own API
to deliver information to Datastore; ⑩ CKAN processes the
resource received from Datastore internally and creates as a
table; and ⑪ it completes the dataset and resource creation
by storing the metadata. Through these steps, the metadata
are stored in the meta-DB. The resources are basically stored
in Filestore, and the resources in CSV/Excel format are sepa-
rately stored in Datastore.

Figure 5 shows the data deletion process, with each step
described as follows: ① The data provider requests the data-
set deletion; ② CKAN delivers the dataset information to be
deleted to View through the API; ③ it retrieves the dataset
information from the meta-DB and delivers it to Model; ④ it
checks the dataset information and delivers an actual deletion

request to Logic; ⑤ it checks the authentication and autho-
rization of the user to delete the dataset; ⑥ CKAN changes
the status information of the data to be deleted from “active”
to “deleted”; ⑦ the deleted dataset is moved to the trash bin
on the platform administrator page; ⑧ the platform adminis-
trator finally decides whether to completely delete it from the
meta DB; ⑨ the administrator executes a command to empty
the trash; and ⑩ CKAN deletes all information related to
the deleted dataset, such as tags and resources, from the me-
ta-DB. As shown in the mentioned steps, the dataset deletion
is performed sequentially. Ultimately, the platform admin-
istrator should perform the purge command on the admin-
istrator's page to completely delete all relevant information
from the meta-DB. At this time, the metadata related to the
resources belonging to the deleted dataset are also deleted.

The CKAN dataset deletion process described so far
causes two big problems. The first problem is data inconsis-
tency, which means a mismatch between the meta-DB and
the actual data storage. The second problem is storage space
waste, which means that inaccessible data are unnecessarily
maintained due to the data inconsistency. Table 3 summa-
rizes these two problems.

Figure 6 shows the data inconsistency problem in CKAN.
The existing CKAN incurs the data inconsistency problem be-
cause it deletes the metadata only without deleting the resource
files from the actual storage. In the figure, (A) shows the data
inconsistency between meta-DB and Filestore, and (B) shows
the data inconsistency between meta-DB and Datastore.

This data inconsistency causes serious problems in man-
aging data as the platform becomes larger. In addition, ar-
chiving the original data files of resources that are no longer

F I G U R E 4   Data registration process in Comprehensive Knowledge Archive Network (CKAN) through Datastore

Admin

Publisher

Consumer CKAN

Controller

Meta
database

Filestore

UI

Datastore

ckanext

Datapusher

Datastore

auth

Logic

action

Model

package

resource

modification

uploader

dataset

View

admin

①
Request
package

registration

②

③ ④ ⑤

⑥
If resource

format is csv or xls,
notify to datastore

⑪ Create package

⑦
Upload
resource

⑨ notify

⑩
Create tables
in datastore

⑧
Upload files in

filestore

 | 841

KIM et al.

distributed causes serious storage space waste. Storage space
waste arises from the data inconsistency and the actual data
storage having no delete function. In other words, the exist-
ing CKAN does not support the delete function to remove
data files stored in Filestore and Datastore. These are pointed
out by many CKAN users as big problems. Major national
portals deal with these problems in their own way, but no
common solutions have yet been provided.

4.2  |  Problem analysis of existing
CKAN harvesting

The open-data platform basically performs one harvesting op-
eration at a time. It queues other operations if the previous one is
not completed and executes them later. Looking at the harvest-
ing steps based on the queue are as follows. First, the Gather
step operates in a separate queue, gather_consumer, and receives
job_id as input. Second, the Fetch step receives and processes

object_id through fetch_consumer. Third, the Import step per-
forms the operation through the CKAN internal API without
going through the queue. Please refer to Appendix D for the de-
tails of the internal operations performed in the harvesting steps.

We identified three major problems in Table 4 while
analyzing the CKAN harvesting function. First, the source
deletion problem occurs when deleting a source from the
Harvest Extension because it only changes the source table
to an inactive state, but does not delete the relevant data.
Figure 7 shows a comparison of the example contents of the
package table of storing dataset information and the harvest_
source table of storing source information after deleting the
source. After deletion, only two tables are marked as inactive.
The data related to the source are not deleted.

Second, the job stop problem is that once a job is executed,
there is no way to stop or delete it in the middle. According to
the source code analysis, we confirmed that the current job stop
function only changes the status in DB, but does not stop the
job. In CKAN, the harvesting job runs in the background; thus,
the job to be stopped does not actually stop and continues to
run, causing system resource waste and waiting for other jobs.

Third, the service interruption problem occurs when the
remote source platform that provides the harvesting service
no longer supports the service. In this case, the platform that
collects and distributes the data can no longer provide data
to the user because the existing harvesting collects only the
metadata, and the actual data exist in the external sources.
On the contrary, users with access to metadata may want to
receive continuous data services, even if limited; however,
the current Harvest Extension does not support this service.

F I G U R E 5   Data deletion process in Comprehensive Knowledge Archive Network (CKAN) through Datastore

Admin

Publisher

Consumer

CKAN

Controller

Meta
database

Filestore

UI

Datastoreckanext

Datapusher

Datastore

auth

Logic

action

Model

package

resource

modification

uploader

dataset

View

admin

①
Request
package
deletion

②

③ ④ ⑤

⑥
Change state for
package deleted

⑧
Decide the

final deletion

⑦ Deleted package goes to admin page⑨
Empty
trash

⑩
Delete all metadata associated
with package deleted from DB

T A B L E 3   Comprehensive Knowledge Archive Network (CKAN)
problems caused by the deletion process

Problem Problem details

Data inconsistency —	Data inconsistency occurs in between
meta-DB and Filestore

—	Data inconsistency occurs in between
meta-DB and Datastore

Storage space waste —	Storage space is wasted in Filestore
—	Storage space is wasted in Datastore

| 842

KIM et al.

4.3  |  Design and implementation of the
improved CKAN

In this section, we design and implement a practical solution
to the data inconsistency and storage space waste problems of
CKAN. To this end, we first present two scenarios in which
the resource is deleted. Based on these, we then explain how
to solve the problems. Scenario 1 is the case where a data pro-
vider deletes a resource registered by itself. Scenario 2 is the
case where a platform administrator finally deletes a dataset.
In Scenario 1, when a data provider deletes a resource, the ex-
isting CKAN changes its resource status to “deleted” in the
metadata and no longer distributes the data. To solve these
two problems, we improve CKAN to change the resource sta-
tus in the metadata and at the same time delete the resource
files in Filestore and Datastore. Figure 8 illustrates the process
of solving the resource deletion problems in Scenario 1. As
shown in the figure, if the provider requests deletion (①–②)
and the resource status changes in metadata (③–⑥), the im-
proved CKAN also deletes the original data files of each re-
source from the storage (⑦–⑧).

In Scenario 2, the data provider requests the dataset deletion,
and the platform administrator finally performs the deletion func-
tion. Even in this case, the existing CKAN still maintains the ac-
tual data files of the deleted resource in each storage. To solve this,
when the platform administrator performs the purge function, we
improve CKAN to perform the actual delete function after check-
ing whether the data files are stored. Figure 9 shows the improved
process of solving the resource deletion problem in Scenario 2.
When the data provider requests to delete the dataset (①–②), it
is deleted from the metadata (③–⑥) and put into the trash bin of
the platform administrator (⑦). When the platform administra-
tor requests the delete function from the trash bin (⑧), it checks
whether or not the data files are stored in the data storage. If the
original data files remain in Filestore or Datastore, it performs the
actual deletion in each storage and metadata (⑩–⑫).

The existing CKAN has no actual deletion function of data
storage for the two abovementioned scenarios described. We
implement herein the deletion function for the actual storage
and integrate it into the existing CKAN function. We imple-
ment file_remove, which is a function that deletes files stored
in Filestore, and dsfile_remove, which is a function that de-
letes tables stored in Datastore. The readers are referred to the
source code (https://github.com/dasso​lkim/defau​lt-ckan) for
details of the implementation.

4.4  |  Design and implementation of the
improved harvesting extensions

In this section, we design and implement solutions to the
three problems of Harvest Extension. The first is the source

F I G U R E 6   Data inconsistency problems caused by the deletion process

Admin

Publisher

Consumer

CKAN

Controller

Meta
database

Filestore

UI

Datastoreckanext

Datapusher

Datastore

auth

Logic

action

Model

package

resource

modification

uploader

dataset

View

admin

①
Request
package
deletion

②

③ ④ ⑤

⑥
Change state for
package deleted

⑧
Decide the

final deletion

⑦ Deleted package goes to admin page⑨
Empty
trash

⑩
Delete all metadata associated
with package deleted from DB

(A)

(B)

T A B L E 4   Three major problems of the existing Harvest
Extension

Problem Resulting phenomenon

Source deletion —	Waste of DB storage space
—	User autonomy restriction

Job stop —	Waste of system resources
—	Other job waiting situations

Service interruption —	Incomplete data distribution

 | 843

https://github.com/dassolkim/default-ckan

KIM et al.

deletion. In the existing extension, deleting the source
changes only the source table status while keeping the related
data. Accordingly, we improve the source deletion function
of Harvest Extension to solve this problem. In the improved
deletion function, when the user deletes the source, it deletes
data from 20 related tables together and finally deletes the
source information. We can solve the source deletion prob-
lem using this function, consequently saving the DB storage
space. In Harvest Extension 1.1.0 [31], a function similar to
the deletion function in this study was included as a “delete
and clear source.” The two functions are similar in terms of
deleting the source and related data together. However, a dif-
ference is that while version 1.0.0 does not delete the actual

source information, our deletion function completely deletes
it, even the source information. We designed and imple-
mented it to be able to select the “deleted clear source” of ver-
sion 1.0.0 and the “delete complete source” of the proposed
solution as options.

Second, the job stop problem comes from the fact that no
actual function exists for stopping jobs in the existing Harvest
Extension. To solve this problem, we developed a function to
actually stop and delete the job. Figure 10 shows the opera-
tion process of the job stop function designed in this study.
First, when the user requests a job stop operation, it calls the
job_abort function to change the DB status (①–③). Next, it
checks the information in the Gather and Fetch queues and

F I G U R E 7   Change in tables after the source deletion in the Comprehensive Knowledge Archive Network (CKAN) harvester

Harvest Source Table

id | title | active | url
--------------------------------------+---------------------+---------+-----------------------
96c483a9-0d61-44cd-ac02-711bd21c9af2 | uk_dataportal | t | https://data.gov.uk/
1a4bf227-13db-4253-843c-d0b0e8b3660f | australian_portal | t | https://data.gov.au
bfcc050e-0cfc-45a9-b8cb-d3efd7954202 | Source Delete Test | f | https://data.gov.lv

Package Table

id | title | state | url
--------------------------------------+---------------------+---------+-----------------------
96c483a9-0d61-44cd-ac02-711bd21c9af2 | uk_dataportal | active | https://data.gov.uk/
1a4bf227-13db-4253-843c-d0b0e8b3660f | australian_portal | active | https://data.gov.au
bfcc050e-0cfc-45a9-b8cb-d3efd7954202 | Source Delete Test | deleted | https://data.gov.lv

F I G U R E 8   Scenario 1: problems and solutions when deleting resources

Admin

Publisher

Consumer CKAN

Controller

UI

auth

Logic

action

Model

package

resource

modification
dataset

View

admin

②

③ ④ ⑤
Meta

database

Filestore

Datastore

⑧
Delete the resource

file in Datastore

⑦
Delete the resource

file in Filestore

①
Request
resource
deletion

⑥
Change the status of

the resource to
deleted

newly created steps: ⑥ ~⑧

| 844

KIM et al.

deletes the requested job and the objects created from the job
(④–⑤). After clearing the queues, it returns the number of
deleted objects and finishes the job stop function. Through
this process, the DB status change and queue data deletion
work together, resulting in successful job stop and deletion.

Third, the service interruption problem means that it can
no longer provide a dataset already harvested by CKAN. We
solve this problem by improving Harvest Extension to retrieve
and store the actual data files that can be collected together
with the metadata when harvesting. Figure 11 shows the entire

harvesting process of collecting not only the metadata, but
also the actual data files. As shown in the figure, the improved
Harvest Extension stores the actual data files in separate data
stores, Filestore and Datastore. We design this function in con-
junction with the Datapusher Extension, where it stores CSV/
Excel format files in Datastore as tables and other format files
or large files in Filestore as regular files. In the figure, the parts
of ⑩–⑬ are the additionally implemented function. We imple-
mented it by extending the harvesting function and integrating
it with the existing collection module.

F I G U R E 9   Scenario 2: problems and solutions when deleting datasets

Admin

Publisher

Consumer CKAN

Controller

UI

auth

Logic

action

Model

package

resource

modification
dataset

View

admin

①
Request
package
deletion

②

③ ④

⑥

⑧
Decide the

final deletion

⑦
⑨

empty
trash

⑤
Meta

database

Filestore

Datastore⑫
Delete resource files associated with
the package deleted from Datastore

Newly created steps: ⑩ ~⑫

⑪
Delete resource files
associated with the

package deleted
from Filestore

⑩
Delete all data related to the package deleted from DB

F I G U R E 1 0   Redesign of Harvest Extension for the improved job stop

①
request

job_abort

Meta
databaseGather Fetch Import

Queue(Redis)

Logic
Logic

Model

View

HarvestModel

Harvester CKAN

②
Change job status “Running” to “Finished”

③
set harvest_object to

“ERROR”

External
source

④
Delete the Gather queue

(remove harvest_job)

⑤
Delete the Fetch queue

(remove harvest_object)

Newly created steps: ④ and ⑤

 | 845

KIM et al.

5  |   EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the changes in the
CKAN and the extension improved in this study. We used
Python as the development language in the same way as
CKAN and PostgreSQL as the DB. We ran CKAN and the
extensions used for the implementation on the Linux server
of Ubuntu 16.04.5 LTS. Table 5 presents the version infor-
mation of the projects used for development.

5.1  |  Evaluation of the improved CKAN

We confirm herein that the improved CKAN correctly solves the
data inconsistency and storage space waste problems through
actual experiments. To do this, we experiment with the delete
function of actual data stores for both scenarios. Scenario 1 is
a case of deleting resources individually, whereas Scenario 2 is
a case of deleting an entire dataset, not an individual resource.

The evaluation result for Scenario 1 verified that when a data
provider deletes a resource, its corresponding files in Filestore
and Datastore are correctly deleted. For the experiment, we
created a dataset with seven resources. In Figure 12, the top

six resources are those stored in Datastore, whereas the bottom
dotted resource is that stored in Filestore. Figure 12 shows the
resource table before and after deleting a resource marked as
solid boxes. The figure shows that the status of the solid-line
resource changes from “active” to “deleted.” “datastore_ac-
tive” also changes from “true” to “false.” Figure 13 compares
the top 10 tables before and after the resource deletion to de-
termine whether this deleted resource is actually deleted from
Datastore. Figure 12 shows that the resource corresponding to
the solid boxes is actually deleted in Figure 13. The result of
Figures 12 and 13 indicates that the improved CKAN correctly
provides the individual resource deletion process of Scenario 1.

The evaluation result for Scenario 2 verified that when a data
provider deletes an entire dataset, and a platform administrator
performs the purge function, all the corresponding resource files
are correctly deleted from Filestore and Datastore. To this end,
we evaluated Scenario 2 by deleting the dataset and the resources
of Scenario 1. The execution log in Figure 14 shows that the
dotted-line resource in Figure 12 was deleted from Filestore. The
five resources located above the solid-line resource in Figure 13
were also deleted from Datastore. In addition, Figure 15 shows
that the related resources were correctly deleted by comparing
Datastore tables before and after dataset deletion. The result of
Figures 14 and 15 indicates that the improved CKAN correctly
provides the dataset deletion process of Scenario 2.

5.2  |  Evaluation of the improved
harvest extension

In this section, we evaluate the improvement of Harvest
Extension by experiments. First, we experimented on the new

F I G U R E 1 1   Improved harvesting operation for solving the service interruption problem

①
Create harvest
source and job

Meta
databaseGather Fetch Import

External
source

③ Read dataset
(CKAN or DCAT)

Queue(Redis)

Datastore

Filestore

Datapusher

Datastoreckanext

⑪ Notify datastore

Logic

CKAN

Logic

Model

View

HarvestModel

Harvester

② create source

④ Send job and objects

⑧
Create

package

⑤ ⑥

⑦ ⑨
Store

metadata

⑩ Notify datapusher

⑫
Download

files to
Filestore

⑬
Create tables
in Datastore

T A B L E 5   Version information of the projects used for
development.

Project Version Project Version

Comprehensive Knowledge
Archive Network

2.6.2 Harvest
Extension

1.1.0

Datapusher extension 0.0.12 DCAT
extension

0.0.5

| 846

KIM et al.

source deletion function. The newly implemented feature de-
letes related data from 20 tables when the source is deleted
and finally deletes source information from the harvest_source
table. Figure 16 shows the output of 20 tables in the order of

the largest DB size before and after applying the new deletion
function. The left side of the figure depicts four harvesting-
related tables before deletion, and the harvest_object table has
the largest size. In the right side of the figure, the size of the

F I G U R E 1 2   Comparison of the resource tables before and after resource deletion

Resource Table(Before)

id | name | format | state | extras
--------------------------------------+---------------------------+--------+--------+----------------------------- -
23e50cfa-bf2c-40a0-96fe-e0bf16e6a188 | financial_advisers_1.xlsx | XLSX | active | {"datastore_active": true}
26525078-cdcb-4d0b-ac32-f6d20cf5008c | financial_advisers_2.xlsx | XLSX | active | {"datastore_active": true}
1488c742-5a25-43a0-8c4e-733949e26eb3 | financial_advisers_3.xlsx | XLSX | active | {"datastore_active": true}
847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 | financial_advisers_4.xlsx | XLSX | active | {"datastore_active": true}
6669c5ae-81a5-4258-bbf8-ef54afea28e5 | financial_advisers_5.xlsx | XLSX | active | {"datastore_active": true}
2345682a-77c8-4623-b101-c6966a4b617c | financial_advisers_6.xlsx | XLSX | active | {"datastore_active": true}
8897634c-e0e9-497d-83a9-a367bef40dcd | wexford_districts.rdf | RDF | active | {"datastore_active": false}

Resource Table(After)

id | name | format | state | extras
--------------------------------------+---------------------------+--------+---------+-----------------------------
23e50cfa-bf2c-40a0-96fe-e0bf16e6a188 | financial_advisers_1.xlsx | XLSX | deleted | {"datastore_active": false}
26525078-cdcb-4d0b-ac32-f6d20cf5008c | financial_advisers_2.xlsx | XLSX | active | {"datastore_active": true}
1488c742-5a25-43a0-8c4e-733949e26eb3 | financial_advisers_3.xlsx | XLSX | active | {"datastore_active": true}
847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 | financial_advisers_4.xlsx | XLSX | active | {"datastore_active": true}
6669c5ae-81a5-4258-bbf8-ef54afea28e5 | financial_advisers_5.xlsx | XLSX | active | {"datastore_active": true}
2345682a-77c8-4623-b101-c6966a4b617c | financial_advisers_6.xlsx | XLSX | active | {"datastore_active": true}
8897634c-e0e9-497d-83a9-a367bef40dcd | wexford_districts.rdf | RDF | active | {"datastore_active": false}

F I G U R E 1 3   Comparison of the top 10 Datastore tables before and after resource deletion

Datastore top-10(Before)

relation | total_size
--------------------------------------+------------
215b20f6-b552-4c28-81bb-96980779470d | 299 MB
2156cb99-3358-4847-8b5b-fcd2f0d3c4e2 | 119 MB
6669c5ae-81a5-4258-bbf8-ef54afea28e5 | 119 MB
1488c742-5a25-43a0-8c4e-733949e26eb3 | 118 MB
2345682a-77c8-4623-b101-c6966a4b617c | 118 MB
26525078-cdcb-4d0b-ac32-f6d20cf5008c | 118 MB
847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 | 118 MB
23e50cfa-bf2c-40a0-96fe-e0bf16e6a188 | 116 MB
85985c4a-257b-4bcf-9bb7-85cea53a8b4c | 98 MB
bc1e8f00-a36b-41d6-a452-bdc27690dfb1 | 71 MB

Datastore top-10(After)

relation | total_size
--------------------------------------+------------
215b20f6-b552-4c28-81bb-96980779470d | 299 MB
2156cb99-3358-4847-8b5b-fcd2f0d3c4e2 | 119 MB
6669c5ae-81a5-4258-bbf8-ef54afea28e5 | 119 MB
1488c742-5a25-43a0-8c4e-733949e26eb3 | 118 MB
2345682a-77c8-4623-b101-c6966a4b617c | 118 MB
26525078-cdcb-4d0b-ac32-f6d20cf5008c | 118 MB
847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 | 118 MB
85985c4a-257b-4bcf-9bb7-85cea53a8b4c | 98 MB
bc1e8f00-a36b-41d6-a452-bdc27690dfb1 | 71 MB
e2d51de7-6917-44bb-9d81-8083cd415c34 | 36 MB

F I G U R E 1 4   Resource deletion logs generated when deleting a dataset

/var/lib/ckan/default/resources/889/763
/var/lib/ckan/default/resources/889/763/4c-e0e9-497d-83a9-a367bef40dcd
remove filepath /var/lib/ckan/default/resources/889/763/4c-e0e9-497d-83a9-a367bef40dcd
remove directory /var/lib/ckan/default/resources/889/763
INFO Resource file deleted.
DEBUG Delete 8897634c-e0e9-497d-83a9-a367bef40dcd resource in Filestore

.

.

.
DEBUG Setting datastore_active=False on resource 847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20
{u'resource_id': u' 847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 '}
INFO /api/action/datastore_delete render time 0.508 seconds
DEBUG Delete 847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 resource in Datastore

Deletion from filestore

Deletion from datastore

 | 847

KIM et al.

harvesting-related tables is reduced after deletion by the new
feature. Only the harvest_object table remains in the top 20.

Second, we evaluated the new job stop function of the
improved Harvest Extension. Figure 17 shows example logs
when executing the job stop function. According to the log

information, it deletes the data remaining in the queue and
returns the number of deleted objects after completing the
DB status change for the job and related objects. The dotted-
line objects are stored as the “COMPLETE” state because
their harvesting is already completed. The solid-line objects

F I G U R E 1 5   Comparison of the top 10 Datastore tables before and after dataset deletion

Datastore top-10(After)

relation | total_size
--------------------------------------+------------
215b20f6-b552-4c28-81bb-96980779470d | 299 MB
2156cb99-3358-4847-8b5b-fcd2f0d3c4e2 | 119 MB
85985c4a-257b-4bcf-9bb7-85cea53a8b4c | 98 MB
bc1e8f00-a36b-41d6-a452-bdc27690dfb1 | 71 MB
e2d51de7-6917-44bb-9d81-8083cd415c34 | 36 MB
2de59763-765d-4955-be0e-e565c71b67be | 32 MB
eaad3718-c9f3-464f-a734-9a87f026790e | 29 MB
04d746c4-c7b6-4af2-a2fa-1187bb34bdc8 | 28 MB
8d87a380-da50-4c43-8912-0bec889bcc90 | 28 MB
27d4eaed-d730-45fb-96a5-31fc8abc0221 | 21 MB

Datastore top-10(Before)

relation | total_size
--------------------------------------+------------
215b20f6-b552-4c28-81bb-96980779470d | 299 MB
2156cb99-3358-4847-8b5b-fcd2f0d3c4e2 | 119 MB
6669c5ae-81a5-4258-bbf8-ef54afea28e5 | 119 MB
1488c742-5a25-43a0-8c4e-733949e26eb3 | 118 MB
2345682a-77c8-4623-b101-c6966a4b617c | 118 MB
26525078-cdcb-4d0b-ac32-f6d20cf5008c | 118 MB
847ca5c4-4155-4ed1-a5bb-7ecfbd83ff20 | 118 MB
85985c4a-257b-4bcf-9bb7-85cea53a8b4c | 98 MB
bc1e8f00-a36b-41d6-a452-bdc27690dfb1 | 71 MB
e2d51de7-6917-44bb-9d81-8083cd415c34 | 36 MB

F I G U R E 1 6   Comparison of the DB top 20 table size before and after applying the delete function

top-20 relation(TO-BE)

1.activity_detail 11.package_revision
2.package_extra_revision 12.member_revision
3.resource_revision 13.member
4.package_extra 14.revision
5.resource 15.resource_view
6.package_tag_revision 16.tag
7.harvest_object 17.task_status
8.package 18.user
9.package_tag 19.group
10.activity 20.dashboard

top-20 relation(AS-IS)

1.harvest_object 11.package_extra
2.activity_detail 12.member_revision
3.resource_revision 13.member
4.package_tag_revision 14.revision
5.resource 15.resource_view
6.package_extra_revision 16.tag
7.activity 17.task_status
8.package 18.harvest_object_error
9.package_tag 19.harvest_object_extra
10.package_revision 20.harvest_gather_error

F I G U R E 1 7   Example logs when executing the new job stop function

INFO Harvest job changed status from "Running" to "Finished"
INFO Harvest object not changed from "COMPLETE": 663277ee-805a-4473-9745-a63166b7ae98
INFO Harvest object not changed from "COMPLETE": 59642b7b-01b6-4713-af47-75fdbb9fcf84
...
INFO Harvest object changed state from "WAITING" to "ERROR": e4fc11fd-dc59-4187-9a80-dffecefe7583

.

.
INFO Harvest queue purge start...
DEBUG Gather queue consumer registered
INFO Redis gather queue purged
DEBUG Fetch queue consumer registered

.

.
DEBUG Delete b6d19ab3-f77a-44eb-ae99-0e21be9d6e5d object in fetch_queue
DEBUG Delete e4fc11fd-dc59-4187-9a80-dffecefe7583 object in fetch_queue
857 objects are deleted in fetch_queue
DEBUG Delete 857 objects in fetch queue
INFO Redis fetch queue purged
INFO Harvest queue purged!
Job status: Finished

Completion of DB status change

Data deletion form the queue

| 848

KIM et al.

are changed to the “ERROR” state because they are stopped
before the operation is completed. The new job stop function
deletes the objects in the queue after these status changes.
Figure 17 shows that 857 objects are deleted from the queue.

Third, we evaluated the extended harvesting function that col-
lects the actual data files and the metadata to determine whether the
service interruption problem is resolved. Figure 18 shows example
logs of the process of the Datapusher collecting the actual data files
when the resource information exists during the harvesting process.
In the logs, the solid-line resource is stored in Datastore, whereas
the dotted-line resource is stored in Filestore because it does not
match the specified format. The resource table of Figure 19 shows
that the collected data files by harvesting in Figure 18 are success-
fully stored in the data storage. Figure 19 depicts that the solid-line
resource is stored in a CSV format in Datastore, and the “data-
store_active” value is marked as “true.” Meanwhile, the dotted-line
resource is stored in Filestore because its format is KML, indicating
that the “datastore_active” value is marked as “false.”

6  |   CONCLUSIONS

This study proposed an improvement version of CKAN and
Harvest Extension for the efficient collection and manage-
ment of open data. The existing CKAN deleted metadata in-
formation only from meta-DB, and not the actual data files
from Filestore and Datastore. This caused data inconsistency

between meta-DB and data storage and storage space waste
of storing unnecessary data files. To solve these data deletion
problems of CKAN, we analyzed the operations of deleting
resources, presented two deletion scenarios, and proposed a
new mechanism of deleting files stored in the data storage.
More specifically, we designed a new delete function of re-
moving actual data files and implemented it in Filestore and
Datastore. Using the improved deletion function, we solved
the data inconsistency and storage space waste problems by
deleting the actual data files from Filestore and Datastore.

From the existing Harvest Extension, we derived three prob-
lems of source deletion, job stop, and service interruption and
improved Harvest Extension to solve those problems. First, we
solved the source deletion problem by extending the deletion
function to remove all relevant data from the 20 tables related
to the source in addition to deleting only the source information.
Second, we solved the job stop problem by improving the job
stop function to not only delete the already processed data, but
also clear the unprocessed data in the queue. Third, we solved
the service interruption problem by extending the harvesting
function to collect the actual data files in addition to the meta-
data such that the data service could be continued, even if the
portal service is closed.

In this study, we experimentally evaluated the improved CKAN
and Harvest Extension. The experimental results confirmed that the
improved version correctly resolved all the problems of the existing
CKAN and Harvest Extension. The results of these improvements

F I G U R E 1 8   Example logs showing that the improved Harvest Extension actually collects data files

DEBUG Setting datastore_active=True on resource 1bf0923e-6133-40a9-bcc3-9641fd8eb036
INFO /api/3/action/datastore_create render time 2.533 seconds

.

.
INFO datapusher_hook call resource_upload
INFO call resource_upload for a3ed97be-e546-4ffd-bec2-7ef21e7085ae resource

.

.
DEBUG Start Download Resource a3ed97be-e546-4ffd-bec2-7ef21e7085ae
DEBUG Finish Download Resource File in Tempfile
DEBUG Real Data Import finished
DEBUG Start Download Resource 1bf0923e-6133-40a9-bcc3-9641fd8eb036
DEBUG Finish Download Resource File in Tempfile
DEBUG Real Data Import finished

File collection to filestore

Data collection to datastore

F I G U R E 1 9   Resource table showing the collected files by harvesting

Resource Table

id | format | state | extras
--------------------------------------+-----------+--------+----------------------------
7a2984cd-35a9-4e53-ba67-9f0ea2ecbde5 | JSON | active | {"datastore_active": false}
a3ed97be-e546-4ffd-bec2-7ef21e7085ae | KML | active | {"datastore_active": false}
d1321642-75c8-4c06-9cae-38be4a00d860 | ZIP | active | {"datastore_active": false}
1bf0923e-6133-40a9-bcc3-9641fd8eb036 | CSV | active | {"datastore_active": true}

 | 849

KIM et al.

mean that our solutions enhance the status of CKAN as an open-
source platform and increase its completeness.

ORCID
Dasol Kim https://orcid.org/0000-0003-4389-5070
Yang-Sae Moon https://orcid.org/0000-0002-2396-0405

REFERENCES
	 1.	 CKAN documentation, available at http://docs.ckan.org/.
	 2.	 Open Government Platform (OGPL), available at https://ogpl.

github.io/.
	 3.	 Socrata, available at https://dev.socra​ta.com/.
	 4.	 S. Corlosquet et al., Produce and consumer linked data with

drupal!, in Proc. Int. Semantic Web Conf. (Chantilly, VA, USA),
Oct. 2009, pp. 763–778.

	 5.	 Junar, available at https://www.junar.com/.
	 6.	 Open Knowledge Foundation (OKFN), why open data, available at

https://okfn.org/opend​ata/why-open-data/.
	 7.	 A. S. Correa and F. S. Silva, Laying the foundations for bench-

marking open data automatically: A method for surveying data
portals from the whole web, in Proc. Int Conf. Dig. Gov. Res.
(Dubai, United Arab Emirates), June 2019, pp. 287–296.

	 8.	 J. Winn, Open data and the academy: An evaluation of CKAN for
research data management, in Proc. Int. Assoc. Soc. Sci. Inform.
Serv. Tech. (Cologne, Germany), May 2013.

	 9.	 R. Kitchin, The data revolution: Big data, open data, data infra-
structures and their consequences, SAGE Publications, Thousand
Oaks, CA, USA, 2014.

	10.	 F. Kirstein et al., Linked data in the European data portal: A com-
prehensive platform for applying DCAT-AP, in Proc. Int. Conf.
Electron. Gov. (Tronto, Italy), July 2019, pp. 192–204.

	11.	 B. Momjian, PostgreSQL: Introduction and Concepts, vol. 192,
Addison-Wesley, Boston, MA, USA, 2001.

	12.	 R. Copeland, Essential SQLAlchemy, O’Reilly Media, Sebastopol,
CA, USA, 2008.

	13.	 E. O’Neil, Object/relational mapping 2008: Hibernate and the en-
tity data model (EDM), in Proc. ACM SIGMOD Int. Conf. Manag.
Data (Vancouver, Canada), June 2008, pp. 1351–1356.

	14.	 D. Smiley et al., Apache solr enterprise search server, Packt,
Birmingham, UK, 2015.

	15.	 CKAN User Guide, available at https://docs.ckan.org/en/lates​t/
user-guide.html/.

	16.	 Jinja2 documentation, available at http://jinja.palle​tspro​jects.com/
en/2.10.x/.

	17.	 C. Bizer, T. Heath, and T. Berners-Lee, Linked data: The story so
far, in Semantic Services, Interoperability and Web Applications:
Emerging Concepts, IGI Global, Hershey, PA, USA, 2011, pp.
205–227.

	18.	 M. Jabalameli, M. Nematbakhsh, and A. Zaeri, Ontology-
lexiconbased question answering over linked data, ETRI J. 42
(2020), no. 2, pp. 239–246.

	19.	 F. Maali, J. Erickson, and P. Archer, Data catalog vocabulary
(DCAT), W3C Recommendation, Jan. 2014.

	20.	 K. Banker, MongoDB in action, Manning Publications, Shelter
Island, NY, USA, 2011.

	21.	 M. Palankar et al., Amazon S3 for science grids: A viable solution?,
in Proc. Int. workshop Data-aware Distrib. Comput. (Boston, MA,
USA), June 2008, pp. 55–64.

	22.	 C. Millette and P. Hosein, A consumer focused open data platform, in
Proc. Int. Conf. Big Data Smart City (Muscat, Oman), Mar. 2016, pp. 1–6.

	23.	 H. Elmekki, D. Chiadmi, and H. Lamharhar, Open government
data: Problem assessment of machine processability, in Proc.
Int. Conf. Inform. Syst. Technol. Support Learn. (Marrakech,
Morocco), Oct. 2018, pp. 492–501.

	24.	 J. J. Macedo, OpenEasier: A CKAN extension to enhance opendata
publication and management, M.S. thesis, UFRN, Brazil, Aug. 2018.

	25.	 A. Varon-Capera et al., VACIT: Tool for consumption, analysis
and machine learning for LOD resources of CKAN instances, in
Proc. Int. Conf. Inform. Syst. Technol. Support Learn. (Marrakech,
Morocco), Nov. 2018, pp. 552–564.

	26.	 R. Scholz et al., A CKAN plugin for data harvesting to the hadoop
distributed file system, in Proc. Int. Conf. Cloud Comput. Serv. Sci.
(Porto, Portugal), Apr. 2017, pp. 19–28.

	27.	 D. Tunkelang, Faceted Search, Synthesis Lectures on Information
Concepts, Retrieval, and Services, vol. 1, Morgan & Claypool
Publishers, San Rafael, CA, USA, 2009.

	28.	 J. Han et al., Survey on NoSQL database, in Proc. Int. Conf.
Pervasive Comput. Appl. (Port Elizabeth, South Africa), Oct.
2011, pp. 363–366.

	29.	 V. Ionescu, The analysis of the performance of RabbitMQ and
ActiveMQ, in Proc. RoEduNet Int. Conf. Netw. Educ. Res. (Craiova,
Romania), Sept. 2015, pp. 132–137.

	30.	 P. Heim et al., RelFinder: Revealing relationships in RDF knowl-
edge bases, in Proc. Int. Conf. Semantic Digit. Media Technol.
(Graz, Austria), Dec. 2009, pp. 182–187.

	31.	 CKAN Harvest Extension v1.1.0, available at https://github.com/
ckan/ckane​xthar​vest/relea​ses/tag/v1.1.0/.

AUTHOR BIOGRAPHIES

 Dasol Kim received his BS and MS de-
grees in computer science from
Kangwon National University,
Chuncheon, Rep. of Korea, in 2017 and
2019. He is currently a PhD student in
interdisciplinary graduate program in
medical bigdata convergence at

Kangwon National University. His research interests in-
clude data mining, big data management, data platform,
and distributed systems.

 Myeong-Seon Gil received BS and
MS degrees in computer science from
Kangwon National University,
Chuncheon, Rep. of Korea, in 2007
and 2009. From 2009 to 2011, she was
a system developer at Kangwon
National University, where she partici-
pated in developing mobile and web

portal services. She is currently a PhD student in computer
science at Kangwon National University. Her research in-
terests include data mining, big data, and data stream
analysis.

| 850

https://orcid.org/0000-0003-4389-5070
https://orcid.org/0000-0003-4389-5070
https://orcid.org/0000-0002-2396-0405
https://orcid.org/0000-0002-2396-0405
http://docs.ckan.org/
https://ogpl.github.io/
https://ogpl.github.io/
https://dev.socrata.com/
https://www.junar.com/
https://okfn.org/opendata/why-open-data/
https://docs.ckan.org/en/latest/user-guide.html
https://docs.ckan.org/en/latest/user-guide.html
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
https://github.com/ckan/ckanextharvest/releases/tag/v1.1.0/
https://github.com/ckan/ckanextharvest/releases/tag/v1.1.0/

KIM et al.

 Minh Chau Nguyen received BS de-
gree in computer science from the
University of Sciences, Ho Chi Minh,
Vietnam, in 2009. He received MS
degree in computer science from the
Korea Advanced Institute of Science
and Technology, Daejeon, Rep. of
Korea, in 2013. He is currently a re-

searcher of the CyberBrain Research Section at Electronics
and Telecommunications Research Institute, Daejeon,
Rep. of Korea. His research interests include big data
management, software architecture, and distributed
systems.

 Heesun Won received BS degree in
computer science from Yonsei
University, Seoul, Rep. of Korea, in
1990. She received her MS and PhD
degrees in computer science from
Korea Advanced Institute of Science
and Technology, Daejeon, Rep. of
Korea, in 1992 and 2016. From 1992 to

1999, she was a researcher in Korean Broadcasting
System. She is currently a principal researcher of
CyberBrain Research Section at Electronics and
Telecommunications Research Institute, Daejeon, Rep. of
Korea. Her research interests include intelligent data hub,
dataset curation, and *aaS platform.

 Yang-Sae Moon received his BS, MS,
and PhD degrees in computer science
from Korea Advanced Institute of
Science and Technology, Daejeon,
Rep. of Korea, in 1991, 1993, and
2001. From 1993 to 1997, he was a re-
search engineer in Hyundai Syscomm,
Inc. From 2002 to 2005, he was a tech-

nical director in Infravalley, Inc. He is currently a profes-
sor of Computer Science Department at Kangwon National
University. In Kangwon National University, he was a
dean in Computer Science Department from 2010 to 2013,
a vice dean in Planning Department of Headquarter from
2013 to 2014, and a vice dean in College of Information
Technology from 2014 to 2016. He was a visiting scholar
at Purdue University, IN, USA, in 2008 to 2009. His re-
search interests include data mining, knowledge discov-
ery, storage systems, access methods, multimedia infor-
mation retrieval, big data analysis, and data stream
analysis. He is a member of the IEEE and a member of the
ACM.

 | 851

KIM et al.

APPENDIX A

CKAN main tables

F I G U R E A 1   ER diagram for
managing datasets in Comprehensive
Knowledge Archive Network (CKAN)

Figure A1 shows an ER diagram of tables that store relevant metadata when creating a dataset. The package table stores meta-
data for the dataset. The package_extra table stores the custom field information given by the data provider in a key/value
format. The package_tag table manages tag information for the dataset. The related tag table stores the actual tag information.
The package_relationship table stores the relationship between datasets. The package_revision table stores the revision history
of the data stored in the package table. Finally, the revision table is the most frequently referenced table in Comprehensive
Knowledge Archive Network (CKAN), storing all the change information of the CKAN internal elements.

| 852

KIM et al.

APPENDIX B

CKAN functions for data users

Figure B2 depicts an example screenshot showing the process of searching the dataset through Faceted Search. Data users can
choose one from organization, group, tag, format, and license in the taxonomy menu on the left side of the screen. The search
result is presented on the right side of the screen. As described, data users can perform data preview and visualization to obtain
insight on the search results.

F I G U R E B 2   Dataset exploration using search filters

 | 853

KIM et al.

APPENDIX C

Harvest Extension-related tables

Figure C3 shows an ER diagram of the tables to be generated when Harvest Extension is added. To perform harvesting in
Comprehensive Knowledge Archive Network (CKAN), we must first register the source information of the external platform
having the dataset to be collected. Here, the source means a remote platform with datasets, that is, other data platforms support-
ing CKAN or DCAT standards. Once the source registration is completed, we run the harvest job that performs harvesting. As
shown in the figure, CKAN stores the source information in the harvest_source table, job information in the harvest_job, and
object information generated by the job in the harvest_object table. The object refers to the package table because it represents
information generated by the dataset. Similar to the package_extra table of Figure A1, the harvest_object_extra table stores
supplementary information on the object in a key/value format.

F I G U R E C 3   ER diagram of the tables
related to Harvest Extension

| 854

KIM et al.

APPENDIX D

CKAN harvesting internal operation analysis

Table D1 shows the internal operations performed in harvesting with three steps. Figure D4 illustrates the operation processes
of Table D1. When the user requests a harvesting job, the operations performed at each step proceed in the order described
earlier. The biggest difference between the Gather, Fetch, and Import steps is that the Gather step performs operations on all
objects at once, whereas the Fetch and Import steps process one object per unit.

T A B L E D 1   Operation processes of each harvesting step

Step Operation processes

Gather ① When a job is created, transmit the job_id to the queue

② Check the source URL that executes the job, and read the dataset information

③ Receive the dataset information, create an object, and store it in DB

④ Extract the created object_id and transmit it to the queue

Fetch ⑤ Receive object_id passed through the Gather step in the queue

⑥ Check DB to see whether the object was created normally and store the timestamp

⑦ Transmit the entire object information to the Import step

Import ⑧ Receive an object and create a dictionary suitable for the internal dataset type

⑨ Transmit the created dictionary and object information together

⑩ Confirm whether the dataset is in the platform through the object and dictionary

⑪ Compare the object's Guid with the last modification time

⑫ Determine the object operation (skip/create/update) through a comparison

⑬ Request the determined action to Comprehensive Knowledge Archive Network (CKAN) through API calls

⑭ Store the final object after completing the operation inside CKAN

F I G U R E D 4   Analysis of the detailed operations in Comprehensive Knowledge Archive Network (CKAN) harvesting

Redis(harvester queue)

Object creation
module

Dataset gathering
module

Gather_Stage Import_StageFetch_Stage

harvest_object
table
(id)

Data flow

① send job.id

harvest_object
table

(id, job.id)

harvest_source
table
(url)

harvest_job
table

(id, source.id)

Object status check
module

(queue.fetch_stage)

harvest_object
table

(id, package.id)

package
table

Dictionary creation
module

(⑧)

Dataset creation
module

(⑩,⑪,⑫)

⑥ check object.id

④ send object.id ⑤ receive object.id

⑦ send object

③
store object

⑨ send dictionary and object

resource
table

tag
table

…

⑭ store object

CKAN⑬ api call

②
receive
dataset

information

 | 855

