Acknowledgement
이 연구는 MSIT/IITP의 ICT R&D 프로그램[2020-0-01268, 2019-0-00008]의 일환으로 수행되었음.
References
- Wikipedia, https://ko.wikipedia.org/wiki/%EC%A0%95%EB%B3%B4
- S.J.B. Yoo et al., "Heterogeneous 2D/3D photonic integrated microsystems," Microsyst. Nanoeng., vol. 2, 2016, Article no. 16030.
- G. Gui et al., "6G: Opening new horizons for integration of comfort, security, and intelligence," IEEE Wirel. Commun., vol. 27, no. 5, 2020, pp. 126-132. https://doi.org/10.1109/mwc.001.1900516
- X. Ren et al., "6G: Network visions and requirements for next generation optical networks," in Proc. Int. Conf. Opt. Instrum. Technol., vol. 11435, Beijing, China, Mar. 2020, p. 2114350H.
- M.W. Akhtar et al., "The shift to 6G communications: Vision and requirements," Hum. Cent. Comput. Inf. Sci., vol. 10, 2020, Article no. 53.
- M. Smit et al, "Past, present, and future of InP-based photonic integration," APL Photonics, vol. 4, 2019, Article no. 050901.
- D.J. Blumenthal et al., "Silicon nitride in silicon photonics," Proc. IEEE, vol. 106, no. 12, 2018, pp. 2209-2231. https://doi.org/10.1109/JPROC.2018.2861576
- R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron.,vol. 12, no. 6, 2006, pp. 1678-1687. https://doi.org/10.1109/JSTQE.2006.883151
- J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res. vol. 8, 2020, pp. 1910-1936. https://doi.org/10.1364/PRJ.395305
- http://www.earlyadopter.co.kr/12496
- N.C. Abrams et al., "Silicon photonic 2.5D multi-chip module transceiver for high-performance data centers," J. Light. Technol., vol. 38, no. 13, 2020, pp. 33467-3357.
- N.C. Abrams, "Development of silicon photonic multi chip module transceivers," Ph. D. thesis, Columbia university, NY, USA, 2020.
- D. Buca et al., "GeSn lasers for CMOS integration," in Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2016, pp. 22.3.1-22.3.4.
- J. Margetis et al., "GeSn-based light sources and photoconductors towards integrated photonics for the mid-infrared," in Proc. IEEE Photonics Society Summer Topical Meeting Series (SUM), San Juan, PR, USA, July 2017, pp. 13-14.
- H. Ito et al., "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, 2004, pp. 709-727. https://doi.org/10.1109/JSTQE.2004.833883
- https://www.infinera.com/wp-content/uploads/The-Advantages-of-InP-Photonic-Integration-in-High-Performance-Coherent-Optics-0223-WP-RevB-0121.pdf
- G. Poberaj et al., "Lithium niobate on insulator (LNOI) for micro-photonic devices," Laser Photonics Rev., vol. 6, no. 4, 2012, pp. 488-503. https://doi.org/10.1002/lpor.201100035
- Y. Sakashita et al., "Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition," J. Appl. Phys., vol. 77, no. 11, 1995, pp. 5995-5999. https://doi.org/10.1063/1.359183
- X. Lansiaux et al., "LiNbO3 thick films grown on sapphire by using a multistep sputtering process," J. Appl. Phys., vol. 90, no. 10, 2001, pp. 5274-5277. https://doi.org/10.1063/1.1378332
- Y. Nakata et al., "Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties," Appl. Phys. A: Mater. Sci. Process., vol. 79, no. 4-6, 2004, pp. 1279-1282. https://doi.org/10.1007/s00339-004-2748-1
- J. Yoon et al., "Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process," Appl. Phys. Lett., vol. 68, no. 18, 1996, pp. 2523-2525. https://doi.org/10.1063/1.115842
- F. Gitmans et al., "Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy," Vacuum, vol. 46, no. 8, 1995, pp. 939-942. https://doi.org/10.1016/0042-207X(95)00077-1
- D. Zhu et al., "Integrated photonics on thin-film lithium niobate," 2021, arXiv: 2102.11956, 2021. https://doi.org/10.1364/AOP.411024
- K. Worhoff et al., "TriPleX: A versatile dielectric photonic platform," Adv. Opt. Technol., vol. 4, no. 2, 2015, pp. 189-207.
- M. Prost et al., "A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs," in Proc. OFC, San Diego, CA, USA, Mar. 2018, pp. 1-3.
- C. Wang et al., "Nanophotonic lithium niobate electro-optic modulators," Opt. Express, vol. 26, no. 2, 2018, pp. 1547-1555. https://doi.org/10.1364/OE.26.001547
- C. Wang et al., "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, vol. 562, 2018, pp. 101-104. https://doi.org/10.1038/s41586-018-0551-y
- K. Luke et al., "Wafer-scale low-loss lithium niobate photonic integrated circuits," Opt. Express, vol. 28, no. 17, 2020, pp. 24452-24458. https://doi.org/10.1364/OE.401959
- M. Zhang et al., "Monolithic ultra-high-Q lithium niobate microring resonator," Optica, vol. 4, no. 12, 2017, pp. 1536-1537. https://doi.org/10.1364/OPTICA.4.001536
- B. Desiatov et al., "Ultra-low-loss integrated visible photonics using thin-film lithium niobate," Optica, vol. 6, no. 3, 2019, pp. 380-384. https://doi.org/10.1364/optica.6.000380
- V. Dobrusin et al., "Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides," Opt. Mater., vol. 29, no. 12, 2007, pp. 1630-1634. https://doi.org/10.1016/j.optmat.2006.08.011
- M. Li et al., "Silicon intensity Mach-Zehnder modulator for single lane 100Gb/s applications," Photonics Res., vol. 6, no. 2, 2018, pp. 109-116. https://doi.org/10.1364/PRJ.6.000109
- G.T. Reed et al., "Silicon optical modulators," Nature Photonics, vol. 4, no. 8, 2010 pp. 518-526. https://doi.org/10.1038/nphoton.2010.179
- J. Ozaki et al., "High-speed modulator for next-generation large-capacity coherent optical networks," NTT Tech. Rev., vol. 16, no. 4, 2018, pp. 1-8.
- S. Lange et al., "100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator," J. Light. Technol., vol. 36, no. 1, 2018, pp. 97-102. https://doi.org/10.1109/jlt.2017.2743211
- Y. Ogiso et al., "[011] waveguide stripe direction n-i-p-n heterostructure InP optical modulator," Electron. Lett., vol. 50, no. 9, 2014, pp. 688-690. https://doi.org/10.1049/el.2014.0430
- D. Sun et al., "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light: Sci. Appl., vol. 9, 2020, Article no. 197.
- J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res., vol. 8, no. 12, 2020, pp. 1910-1936. https://doi.org/10.1364/PRJ.395305
- Y. Qi et al., "Integrated lithium niobate photonics," Nano photonics, vol. 9, no. 6, 2020, pp. 1287-1320.
- C. Wang et al., "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nat. Commun., vol. 10, 2019, Article no. 978.
- G. Schreiber et al., "Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides," in Proc. Symp. Integr. Opt., vol. 4277, San Jose, CA, USA, May 2001.
- R. Brinkmann et al., "Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers," IEEE J Quantum Electron., vol. 30, no. 10, 1994, pp. 2356-2360. https://doi.org/10.1109/3.328589
- C. Huang et al., "980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping," IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, 1996, pp. 367-372. https://doi.org/10.1109/2944.577396
- D.L. Veasey et al., "Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm," IEEE J. Quantum Electron., vol. 33, no. 10, 1997, pp. 1647-1662. https://doi.org/10.1109/3.631259
- W. Sohler et al., "Erbium-doped lthium niobate waveguide lasers," IEICE Trans. Electron., vol. E88-C, 2005, pp. 990-997. https://doi.org/10.1093/ietele/e88-c.5.990
- M. Fleuster et al., "Optical and structural properties of MeV erbium-implanted LiNbO3," J. Appl. Phys., vol. 75, 1994, Article no. 173.
- A. Boes et al., "Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits," Laser Photonics Rev., vol. 12, no. 4, 2018, Article no. 1700256.
- W.K. Chan et al., "Optical coupling of GaAs photodetectors integrated with lithium niobate waveguides," IEEE Photon. Technol. Lett., vol. 2, no. 3, 1990, pp. 194-196. https://doi.org/10.1109/68.50887
- A. Yi-Yan et al., "Grafted GaAs detectors on lithium niobate and glass optical waveguides," IEEE Photon. Technol. Lett., vol. 1, no. 11, 1989, pp. 379-380. https://doi.org/10.1109/68.43385
- W.K. Chan et al., "GaAs photodetectors integrated with lithium niobate waveguides," IEEE Trans. Electron Devices, vol. 36, no. 11, 1989, pp. 2627-2628.
- M.G. Tanner et al., "A superconducting nanowire single photon detector on lithium niobate," Nanotechnol., vol. 23, 2012, Article no. 505201.
- J.P. Hopker et al., "Towards integrated superconducting detectors on lithium niobate waveguides," in Proc. SPIE Nanosci. Eng., vol. 10358, San Diego, CA, USA, Aug. 2017, Article no. 1035809.
- B. Desiatov et al., "Silicon photodetector for integrated lithium niobate photonics," Appl. Phys. Lett., vol. 115, 2019, Article no. 121108.
- M. He et al., "High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond," Nat. Photon., vol. 13, 2019, pp. 359-364. https://doi.org/10.1038/s41566-019-0378-6
- S. Tanzilli et al., "PPLN waveguide for quantum communication," Eur. Phys. J. D., vol. 18, 2002, pp. 155-160.
- G. Fujii et al., "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express, vol. 15, 2007, pp. 12769-12776. https://doi.org/10.1364/OE.15.012769
- H. Jin et al., "On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits," Phys. Rev. Lett., vol. 113, 2014, Article no. 103601.
- J.P. Hopker et al., "Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides," APL Photon., vol. 4, 2019, Article no. 056103.
- K.-H. Luo et al., "Nonlinear integrated quantum electro-optic circuits," Sci. Adv., vol. 5, no. 1, 2019, Article no. eaat1451.
- M. Zhang et al., "Electronically programmable photonic molecule," Nat. Photon., vol. 13, 2019, pp. 36-40. https://doi.org/10.1038/s41566-018-0317-y
- A. Rao et al., "Compact lithium niobate electrooptic modulators," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 4, 2018, pp. 1-14.
- T. J. Kippenberg, et al., "Dissipative Kerr solitons in optical microresonators," Sci., vol. 361, no. 6402, 2018, Article no. eaan8083.
- X. Xue et al., "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., vol. 32, no. 20, 2014, pp. 3557-3565. https://doi.org/10.1109/JLT.2014.2312359
- N. Kuse et al., "Frequency-modulated comb LIDAR," APL Photon., vol. 4, 2019, Article no. 106105.