Acknowledgement
이 논문은 한국전자통신연구원 기본 사업의 일환으로 수행되었음[21ZB1120, 3D 집적 광소수신기를 위한 III-V/Si 기반 광전소자 기술 개발].
References
- V. Joshkin et al., "Biaxial compression in GaAs thin films grown on Si," J. Cryst. Growth, vol. 147, 1995, pp. 13-18. https://doi.org/10.1016/0022-0248(94)00620-2
- P.J. Taylor et al., "Optoelectronic device performance on reduced threading dislocation density GaAs/Si," J. Appl. Phys., vol. 89, 2001, pp. 4365-4375. https://doi.org/10.1063/1.1347000
- K. Akahori et al., "Improvement of the MOCVD-grown InGaP-on-Si towards high-efficiency solar cell application," Solar Energy Mater. Solar Cells, vol. 60, 2001, pp. 593-598. https://doi.org/10.1016/S0927-0248(00)00244-0
- W.-Y. Uen et al., "Heteroepitaxial growth of GaAs on Si by MOVPE using a-GaAs/a-Si double buffer layers," J. Cryst. Growth, vol. 295, 2006, pp. 103-107. https://doi.org/10.1016/j.jcrysgro.2006.07.026
- K. Ma et al., "Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches," IEEE J. Quantum Electron., vol. 40, 2004, pp. 800-804. https://doi.org/10.1109/JQE.2004.828234
- J.W. Lee et al., "Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates," Appl. Phys. Lett., vol. 50, 1987, pp. 31-33. https://doi.org/10.1063/1.98117
- M. Yamaguchi et al., "Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates," Appl. Phys. Lett., vol. 54, 1989, pp. 24-26. https://doi.org/10.1063/1.100819
- M. Yamaguchi et al., "Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices," J. Mater. Res., vol. 6, 1991 pp. 376-384. https://doi.org/10.1557/JMR.1991.0376
- N. Havafuji et al., "Effectiveness of AlGaAs/GaAs superlattices in reducing dislocation density in GaAs on Si," J. Cryst. Growth, vol. 93, 1988, pp. 494-498. https://doi.org/10.1016/0022-0248(88)90572-6
- Y. Shi et al., "Optimization of the GaAs-on-Si substrate for microelectromechanical systems(MEMS) sensor application," Materials, vol. 5, pp. 2917-2926.
- B.L. Sharma and R.K. Purohit, "Characterization of the Grown Layers," in Semiconductor-heterojunctions, Pergamon Press, Oxford, UK, 1974, pp. 57-76.
- L. George et al., "Dislocation filters in GaAs on Si," Semicond. Sci. Techno., vol. 30, no. 11. 2015, 114004. https://doi.org/10.1088/0268-1242/30/11/114004
- M. Tang et al., "Optimizations of defect filter layer for 1.3-㎛ InAs/GaAs quantum-dot lasers monolithically grown on Si substrates," IEEE J. Quantum Electron., vol. 22, 2016, 1900207.
- Y.H. Ko et al., "High quality GaAs epitaxially grown on Si (001) substrate through AlAs nucleation and thermal cycle annealing," Solid State Electron., vol. 166, 2020, 107763. https://doi.org/10.1016/j.sse.2019.107763
- Y.H. Ko, K.J. Kim, and W.S. Han, "Monolithic growth of GaAs laser diodes on Si(001) by optimal AlAs nucleation with thermal cycle annealing," Optical Materials Express, vol. 11, no. 3, 2021, pp. 943-951. https://doi.org/10.1364/OME.411328
- J. Wang et al., "1.3㎛ InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers," Photonics Res., 2018, vol. 6, no. 4, pp. 321-325. https://doi.org/10.1364/PRJ.6.000321
- O. Abouzaid et al., "O-band emitting InAs quantum dots grown by MOCVD on a 300 mm Ge-buffered Si (001) substrate," Nanomaterials, 2020, vol. 10, no. 12, pp. 321-325. https://doi.org/10.3390/nano10020321
- J. Yang et al., "All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates," J. Phys. D: Appl. Phys., vol. 54, no. 3, 2021, 035103. https://doi.org/10.1088/1361-6463/abbb49
- A.Y. Liu et al., "Electrically pumped continuous-wave 1.3㎛ quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si," Optics Letters, vol. 42, 2017 pp. 338-341. https://doi.org/10.1364/OL.42.000338
- D.H. Jung et al., "High efficiency low threshold current 1.3㎛ InAs quantum dot lasers on on-axis (001) GaP/Si," Appl. Phys. Lett., vol. 111, 2017, 122107.
- B. Shi et al., "MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3㎛ quantum dot laser applications," Appl. Phys. Lett., vol. 114, 2019, 172102. https://doi.org/10.1063/1.5090437
- B. Shi et al., "Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon," Optica., vol. 6, 2019, 1507. https://doi.org/10.1364/OPTICA.6.001507
- S. Znu et al., "1.5 ㎛ quantum-dot diode lasers directly grown on CMOS-standard (001) silicon" Appl. Phys. Lett., vol. 113, 2018, 221103. https://doi.org/10.1063/1.5055803
- S. Zhu et al., "Room-temperature electrically-pumped 1.5㎛ InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si" Opt. Express, vol. 26, no. 11, 2018, pp. 14514-14523. https://doi.org/10.1364/OE.26.014514
- S. Zhu et al., "Parametric study of high-performance 1.55㎛ InAs quantum dot microdisk lasers on Si" Opt. Express, vol. 25, no. 25, 2017, pp. 31281-31293. https://doi.org/10.1364/OE.25.031281
- S. Chen et al., "Electrically pumped continuous-wave 1.3㎛ InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates," Opt. Express. vol. 25, 2017, 4632. https://doi.org/10.1364/OE.25.004632
- H. Park et al., "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express. vol. 13, 2005, pp. 9460-9464. https://doi.org/10.1364/OPEX.13.009460
- B. Bakir et al., "Electrically driven hybrid Si/III-V Fabry-Perot lasers based on adiabatic mode transformers," Opt. Express, vol. 19, 2011, pp. 10317-10325. https://doi.org/10.1364/OE.19.010317
- A.W. Fang et al., "A distributed bragg reflector silicon evanescent laser," IEEE Photonics Technol. Lett., vol. 20, 2008, pp. 1667-1669. https://doi.org/10.1109/LPT.2008.2003382
- A.W. Fang et al., "A distributed feedback silicon evanescent laser," Opt. Express, vol. 16, 2008, pp. 4413-4419. https://doi.org/10.1364/OE.16.004413
- D. Liang et al., "Hybrid silicon evanescent approach to optical interconnects," Appl. Phys. A, vol. 95, 2009, pp. 1045-1057. https://doi.org/10.1007/s00339-009-5118-1
- A. W. Fang et al., "A racetrack mode-locked silicon evanescent laser," Opt Express. vol. 16, 2008, pp. 1393-1398. https://doi.org/10.1364/OE.16.001393
- S. Stankovic et al., "1310-nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding," IEEE Photonics Technol. Lett., vol. 23, 2011, 2169397.
- S. Stankovic et al., "Hybrid III-V/Si distributed-feedback laser based on adhesive bonding" IEEE Photonics Technol. Lett., vol. 24, 2012, 2223666.
- K. Tanabe et al., "Electrically pumped 1.3 room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer," Opt. Express, vol. 18, 2010, pp. 10604-10608. https://doi.org/10.1364/OE.18.010604
- T. Hong et al., "A selective-area metal bonding InGaAsP-Si laser" IEEE Photonics Technol. Lett., vol. 22, 2010, pp. 1141-1143. https://doi.org/10.1109/LPT.2010.2050683
- K. Matsumoto et al., "Room-temperature operation of GaInAsP lasers epitaxially grown wafer-bonded InP/Si substrate," Phys. Status. Solidi A, vol. 215, no. 8, 2018.
- Y. Hu et al., "III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template," Light: Sci. Appl., vol. 8, no. 93, 2019.
- S. Matsuo et al., "Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer," Opt. Express, vol. 22, no. 10, 2014.
- T. Aihara et al., "Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide," Opt. Express, vol. 27, no. 25, 2019.
- T. Fujii et al., "Multiwavelength membrane laser array using selective area growth on directly bonded SiO2/Si," Optica, vol. 7, no. 7, 2020.