DOI QR코드

DOI QR Code

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Received : 2021.01.22
  • Accepted : 2021.08.02
  • Published : 2021.12.01

Abstract

This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

Keywords

Acknowledgement

The authors acknowledge the support received from the Coordenacao de Aperfeicoamento de Pessoal de Nivel - Superior-Brazil (CAPES) (Finance Code 001), as well as several anonymous reviewers who contribute to this work.

References

  1. S. H. Won et al., Development of 5G champion testbeds for 5G services at the 2018 winter olympic games, in Proc. IEEE Int. Workshop Signal Process. Adv. Wirel. Commun. (Sapporo, Japan), July 2017, pp. 1-5.
  2. K. Sakaguchi et al., Where, when, and how mmWave is used in 5G and beyond, IEICE Trans. Electron. 100 (2017), 790-808. https://doi.org/10.1587/transele.E100.C.790
  3. B. J. Wysocki, T. A. Wysocki, and J. Seberry, Modeling dual polarization wireless fading channels using quaternions, in Proc. Joint IST Workshop Mob. Future & Symp. Trends Commun. (Bratislava, Slovakia), June 2006, 68-71.
  4. L. G. P. Meloni, Hypercomplex OFDM schemes for cross-polarized antennas, in Proc. Int. Symp. Commun. Inf. Technol. (Gold Coast, Australia), Oct. (2012), 502-507.
  5. L. G. P. Meloni, J. L. H. Ninahuanca, and O. Tormena Jr., Construction and analysis of quaternion MIMO-OFDM communications systems, J. Commun. Inf. Syst. 32 (2017), 80-89.
  6. J. Seberry et al., The theory of quaternion orthogonal designs, IEEE Trans. Signal Process. 56 (2008), no. 1, 256-265. https://doi.org/10.1109/TSP.2007.906773
  7. J. J. van de Beek et al., A time and frequency synchronization scheme for multiuser OFDM, IEEE J. Selected Areas Commun. 17 (1999), no. 11, 1900-1914. https://doi.org/10.1109/49.806820
  8. T. M. Schmidl and D. C. Cox, Robust frequency and timing synchronization for OFDM, IEEE Trans. Commun. 45 (1997), no. 12, 1613-1621. https://doi.org/10.1109/26.650240
  9. H. Minn, V. K. Bhargava, and K. B. Lataief, A robust timing and frequency synchronization for OFDM systems, IEEE Trans. Wirel. Commun. 2 (2003), no. 4, 822-839.
  10. X. Ma et al., Non-data-aided carrier offset estimators for OFDM with null subcarriers: Identifiability, algorithms, and performance, IEEE J. Selected Areas Commun. 19 (2001), no. 12, 2504-2515. https://doi.org/10.1109/49.974615
  11. E. Cho, De Moivre's formula for quaternions, Appl. Math. Lett. 11 (1998), no. 6, 33-35. https://doi.org/10.1016/S0893-9659(98)00098-6
  12. M. T. Loots et al., On the real representation of quaternion random variables, Statistics 47 (2013), no. 6, 1224-1240. https://doi.org/10.1080/02331888.2012.695376
  13. N. L. Bihan, The geometry of proper quaternion random variables, Signal Process. 138 (2017), 106-116. https://doi.org/10.1016/j.sigpro.2017.03.017
  14. S. P. Talebi, S. Kanna, and D. P. Mandic, A Distributed quaternion kalman filter with applications to smart grid and target tracking, IEEE Trans. Signal Inf. Process. Over Netw. 2 (2016), no. 4, 477-488. https://doi.org/10.1109/TSIPN.2016.2618321
  15. T. Ell and S. Sangwine, Hypercomplex Fourier transform of colour images, IEEE Trans. Image Process. 16 (2007), no. 1, 22-35. https://doi.org/10.1109/TIP.2006.884955
  16. S. Said, N. Le Bihan, and S. J. Sangwine, Fast complexified quaternion Fourier transform, IEEE Trans. Signal Process. 56 (2008), no. 4, 1522-1531. https://doi.org/10.1109/TSP.2007.910477
  17. J. J. van de Beek, M. Sandell, and P. O. Borjesson, ML estimation of time and frequency offset in OFDM systems, IEEE Trans. Signal Process. 45 (1997), no. 7, 1800-1805. https://doi.org/10.1109/78.599949
  18. R. K. Martin et al., Algorithms and bounds for distributed TDOA-based positioning using OFDM signals, IEEE Trans. Signal Process. 59 (2011), no. 3, 1255-1268. https://doi.org/10.1109/TSP.2010.2098404
  19. C. R. N. Athaudage and K. Sathananthan, Cramer-Rao lower bound on frequency offset estimation error in OFDM systems with timing error feedback compensation, in Proc. Int. Conf. Inf. Commun. Signal Process. (Bangkok, Thailand), Dec. 2005, pp. 1231-1235.
  20. R. G. Lyons, Understanding Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, USA, 2010, pp. 138-139.
  21. R. G. Vaughan, Polarization diversity in mobile communications, IEEE Trans. Vehicul. Technol. 39 (1990), no. 3, 177-186. https://doi.org/10.1109/25.130998
  22. L. Bai and Q. Yin, CRB for carrier frequency offset estimation with pilot and virtual subcarriers, IEEE Commun. Lett. 16 (2012), no. 4, 522-525. https://doi.org/10.1109/LCOMM.2012.022112.112598
  23. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, Upper Saddle River, NJ, USA, 1993.
  24. P. N. Moss, 2-by-2 MIMO portable reception channel model for dual-polar terrestrial transmission, BBC Research White Paper WHP 162, 2008.