
ETRI Journal. 2021;43(1):141–151.	﻿	   |  141wileyonlinelibrary.com/journal/etrij

Received: 16 September 2019  |  Revised: 21 May 2020  |  Accepted: 16 June 2020

DOI: 10.4218/etrij.2019-0427

O R I G I N A L A R T I C L E

A method for preventing online games hacking using memory
monitoring

Chang Seon Lee1  | Huy Kang Kim2  | Hey Rin Won3  | Kyounggon Kim2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

1Trust & Safety of Cyber Security Center,
LINE Corporation, Tokyo, Japan
2School of Cybersecurity, Korea University,
Seoul, Rep. of Korea
3Department of Information Security, Seoul
Women’s University, Seoul, Rep. of Korea

Correspondence
Kyounggon Kim, School of Cybersecurity,
Korea University, Seoul, Rep. of Korea.
Email: anesra@korea.ac.kr

Abstract
Several methods exist for detecting hacking programs operating within online games.
However, a significant amount of computational power is required to detect the illegal
access of a hacking program in game clients. In this study, we propose a novel detection
method that analyzes the protected memory area and the hacking program's process in
real time. Our proposed method is composed of a three-step process: the collection of
information from each PC, separation of the collected information according to OS and
version, and analysis of the separated memory information. As a result, we successfully
detect malicious injected dynamic link libraries in the normal memory space.

K E Y W O R D S

abuse monitoring, game abuse, injection detection, malware detection and damage recovery,
memory map

1  |   INTRODUCTION

Online game hacking is typically used to level up a play-
er's character faster than in normal game play. Additionally,
gold-farming groups, which are malicious groups that use
game hacking programs to gain illegal financial profits, are
formed to monopolize in-game items and money [1]. A gold
farmer in an online game aims to harvest virtual money using
automated programs (eg, game bots and macros) or hired
low-cost laborers [2]. Real Money Trading (RMT) in online
games is often associated with other criminal activities, such
as money laundering and identity theft [3,4]. Online game
hacking can be classified into three types: automatic play
using a macro, memory modification, and denial of service.
In this study, we focus on detecting memory modification
programs. To modify the memory of an online game client,
hackers often employ security solution bypassing, dynam-
ic-link library (DLL) injection, and memory modification
techniques. As in an arms race, hackers continuously identify
new methods to bypass the security measures used by online

game companies, while the companies rely only on signa-
ture-based detection and heuristics.

The most widely adopted methods to detect game hack-
ing tool are signature-based or heuristic-based detection,
whereas in this study, we propose a method to detect users
who use memory injection techniques. Our proposed method
is lightweight and can achieve high accuracy. The organiza-
tion of the rest of this paper is as follows. In Section 2, we
describe well-known techniques to attack online games, and
review the literature. In Section 3, we present the main al-
gorithm of the proposed detection method. In Section 4, we
present the experimental result. Finally, in Section 5, we con-
clude this paper and suggest directions for future research.

2  |   BACKGROUNDS

Online game hacking can be performed in many ways, such
as auto mouse, macro, map, and speed hacks [5]. In particu-
lar, this section explains attack methods using security solution

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿
https://orcid.org/0000-0002-5675-4253
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:anesra@korea.ac.kr

142  |     LEE et al.

bypassing, memory forgery and alternation, and DLL injec-
tion, which is a representative memory hacking technique. The
most common way to block a DLL injection is to use a game
security solution. However, because game security solutions
operate in the same PC environment, it is possible to bypass the
attacker by analyzing the security solution; thus, the defense
using only the security solution in the user's PC is limited.

2.1  |  Security solution bypassing

Some of the current security solutions for online games in-
clude GameGuard and XignCode. These security solutions
feature the detection of client forgeries, as presented in
Table 1. However, a PC owner can become an attacker and
can be circumvented through analysis.

Therefore, security solutions are not the best way to
safeguard games. When a security solution is bypassed,
DLL injection and code injection are possible using several
techniques.

2.2  |  Memory forgery and alteration

If the security solution is bypassed, the attacker can then ana-
lyze the online game client and attempt to attack based on
the analysis. One of the methods of attack is memory forgery
and alteration. Memory forgery and alteration changes some
options and values used by the game client on the operating
system to make the game easier and faster. Memory forgery
and alteration uses the process illustrated in Figure 1.

The attack method depicted in Figure 1 uses the Cheat
Engine program to modify the memory, and the modified
value is reflected in the Minesweeper game. By simply
changing these values, the attacker can achieve the desired
result in the game. In online games, this simple method of
attack is not possible; however, a simple online game client
running on a user's PC is vulnerable to a forgery attack.

2.3  |  DLL injection

A “DLL” refers to modules and programs with functionali-
ties that can be shared by other applications [6]. Because a
DLL is a module developed program, it can be updated and
reused more easily than application programs. When a DLL
is loaded into the memory address space, the application can
access it at any time to take advantage of its functionality,
thereby reducing memory overhead.

Among the modularized DLLs, there are some DLLs es-
sential for use in the Windows environment. KERNEL32.
DLL, USER32.DLL, and GDI32.DLL are among the DLLs
that must be included in the application development process.

KERNEL32.DLL is a DLL that provides functions to control
memory, processes, and threads. USER32.DLL is a DLL used
to control user interfaces (UIs). If a UI exists in an applica-
tion, USER32.DLL must always be used. Finally, GDI32.DLL
is used to draw graphic images and display text. Similar to
USER32.DLL, if a UI, text, or image is used, GDI32.DLL
must be included in the application. DLLs are categorized into
import functions and export functions. Import functions are
used only inside a DLL and cannot be used in external appli-
cations, whereas export functions can be used externally.

2.3.1  |  Load-time dynamic linking

One of the important processes when an application runs
is to import a list of DLLs for use. Because the applica-
tion does not contain all the code in the DLL, the DLL
must exist in the specified path. Otherwise, the application
will not run. When Windows loads a DLL, it allocates a
virtual memory space and maps the DLL to the allocated
memory.

The section part of an application program shows the DLL
information that is mapped to the memory. When the mem-
ory mapping process is completed, the application's name
and memory address can be verified inside the application.
Additionally, if an application error occurs, an environment
can be used to analyze the source of the error.

2.3.2  |  Run-time dynamic linking

This process explicitly loads the required DLL and then calls
it, if there is a desired symbol, when the application runs. A

F I G U R E 1   Memory forgery and alteration process flow: (1)
Handle permission of the target process is obtained, (2) properties and
values used in the game are examined, and (3) properties and values
are changed

Operating System

Word Program

IE, Chrome,
Firefox…

Messenger

Minesweeper
game

Hacking Tool

Symbol Explanation

Attempt to acquire Process handle

Successfully acquired Process handle

Failed to acquire Process handle

Attempt a Memory Modify Attack

1

2

3

     |  143LEE et al.

thread inside the process decides whether to call a function
inside the DLL, and the thread loads the DLL into the pro-
cess' address space and enables the function inside the DLL
to be called.

The thread can load the DLL using the following function
(LoadLibrary() or LoadLibraryEx()):

The LoadLibrary and LoadLibraryEx functions use a
specific search order to identify DLL files on the system.
These functions are then used to map the file image of the
identified DLL to the address space of the calling process.
The virtual memory address to which the file image is
mapped is identified when returned from the HMODULE
function. When injection occurs, it affects the behavior of
the application in memory in a way that the user does not
expect or intend. There are two modes of dynamic DLL in-
jection, each of which is performed by an attacker in a series
of steps.

A. Remote thread injection
Remote thread injection is used to create a thread in the
target process to load a malicious DLL and then call the
LoadLibrary function. In this way, LoadLibrary can be used
to load malicious DLLs. An attacker cannot easily control a
thread from a process that is not created at first; thus, it must
create a new thread to access the target process. As a result,
creating a thread gives the attacker control over the applica-
tion. For this purpose, the CreateRemoteThread function is
used. Listing 1 is the declaration for the CreateRemoteThread
function in Windows [7].

Figure 2 depicts the method that can be used by malware
to inject a malicious DLL into other processes. First, the
malware opens the process using the OpenProcess function,
which returns an open handle that is responsible for checking
the process privileges; this handle is used to grant the right
access to the target process. Second, the malware allocates
memory using the VirtualAllocEx function to specify the cor-
rect path for the malicious DLL. Third, it writes the DLL path
using the WriteProcessMemory function. Once the path has
been created, the malware initiates the CreateRemoteThread
function to create a thread on the target process, instructing
the thread to load the malicious DLL remotely. As a result, the
malware attaches the malicious DLLs on the target process
and can compromise critical data on the victim’s machine.

B. Windows registry DLL injection
The remote thread injection technique dynamically injects a
DLL that contains the attack code for an attacker developing
or using an injection program. In contrast, there is a method
to force a DLL to be loaded into any program while Windows
is running. When using the registry key “AppInit_DLLs”
provided by Windows, DLL_PROCESS_ATTACH is called
when the User32.dll library is mapped to a newly created
process.

T A B L E 1   Online game security solutions and security features

Solution Security features

GameGuard Server Authentication: prevents bypass by game server and GameGuard mutual authentication. Hack Tool Blocker:
blocks hacking tools using game auto macros, mouse, and graphics. File forgery and manipulation prevention: file
comparison analysis to prevent game file forgery and alteration, malicious debugging, and disassembly prevention.
Client Reporting: real-time detection and blocking of process memory tampering. File protection with self-encryption
algorithm. Antivirus and Spyware: detects malware using signature algorithms and file format analysis and diagnoses
new and modified malware that is difficult to detect with existing antivirus engines. Updates: real-time, regular, and
urgent updates. Reports: Real-time errors, hacking tools, and statistical analysis reports

XignCode Non-client bot detection using “one-time executable code” patent. Block general purpose hacking tool and variant
hacking tool using “Win32 API call pattern and frequency” patent. Block illegal users (control game operators).
Emergency pattern generation tool provided (game operator control available). Detect and block VPN access (control
game operator). DirectX tampering and illegal call detection. Speed nuclear detection. DLL injection detection.
Nuking hack and drop nucleus detection. Software and hardware macro detection. Multi-running detection. Game
resource tampering detection. Stealth process/module/driver detection. Kernel and user mode debugging detection.
Virtual environment execution detection

Listing 1 CreateRemoteThread function. 

144  |     LEE et al.

When the call is processed, User32.dll calls LoadLibrary
for each DLL specified in the AppInit_DLLs key. The
entire library is loaded, and the DllMain function asso-
ciated with the library is called with fdwReason set to
DLL_PROCESS_ATTACH.

2.4  |  Binary code injection

The binary code injection approach is similar to that of DLL
injection. In binary code injection, an attacker sets the remote
address of the injected binary code segment as the thread rou-
tine and creates a remote thread to execute the injected binary
code. This method injects into the target process without an
additional DLL stored in the system. Considering the steps
of binary code injection, this method seems easier than DLL
injection. However, the key point is the construction of the
binary code.

The injected binary code cannot be initialized as a DLL
mapped into the address space of the target process. Although
the binary code can be implemented as a function in the ma-
licious process, there are still complications. First, the binary
code uses absolute addresses to reference variables or call
functions; however, these are the actual addresses in the
address space of the malicious process. Thus, the injected
binary code cannot retrieve the same data or call the same
functions at these addresses in the target process. It would
be easier to combine all the subroutines into a large function,
unless an injection into each subroutine and a pass of their
remote addresses to the injected binary code are desired. A

further complication is that the binary code is relocated in
the malicious process. The target process does not relocate
the injected binary code. Most commonly, operators crash
the target process when a remote thread is created to execute
the injected binary code.

Inline assembly can be used to construct the binary code.
Although this is considerably complicated to implement, there
is no need to manage the relocation of the injected binary code.
Furthermore, the binary code can be much more easily controlled
and is more reliable if assembly language is used to implement
the whole malicious process. Binary code injection is much more
complicated and riskier than DLL injection. Additionally, it pro-
vides the flexibility to inject without an additional DLL.

2.5  |  Related work

Only the client’s environment was detected by monitoring
through hooking in previous studies [8–10]. These detection
methods are necessary to enable the monitoring of hooking
on the client side and its bypassing by blocking the hook-
ing. Furthermore, the false-positive rate of hooking increases
because each PC environment is different. If the client can
identify the server-side environment and the user-specific PC
environment, detection is expected to be more effective than
in previously studied methods.

In [11], Jelena and others categorized detection methods
for malware into static and dynamic analysis, and the authors
focused on the dynamic method. They identified malware
families using memory and CPU usage. Moreover, to detect
malware in mobile devices, features extracted from CPU and
memory were tested.

Zhixing and others [12] suggested a framework for detect-
ing malware using monitoring and classification of memory
access pattern with a machine learning technique. The au-
thors checked for malicious code that attempted to change the
control flow and access the program memory. Additionally,
they used a machine learning techniques to analyze various
rootkits, such as avg-coder and AFkit, which modify the sys-
tem call table.

Rami and others [13] investigated various memory analy-
sis methods, such as static, dynamic, and hybrid techniques.
Memory analysis is a state-of-the-art technique and is widely
using in the forensic field [14,15]. In the survey paper,
many researchers use API function calls to detect malware.
Furthermore, they analyzed memory using machine learning
techniques, such as support vector machines and K-nearest
neighbors.

Existing papers have proposed static, dynamic, and hybrid
methods, as well as the use of machine learning to detect mal-
ware in user PCs. However, our study focuses on detecting
models for each service, and our method is not a dynamic
detection method.F I G U R E 2   Remote thread injection process flow

Unauthorized Process Target Process

Binary Code
Segment

OpenProcess()

CreateProcess()

Binary Code
Segment

VirtualAllocEx()

WriteProcessMemory()

CreateRemoteThread()

OR

     |  145LEE et al.

3  |   PROPOSED METHOD

We propose the game hack module detection method, as
depicted in Figure 3. Our proposed method is a three-
step process. The first step is the collection of informa-
tion from each PC. The second step is the separation of
the collected information according to OS and version.
The third step is the analysis of the separated memory
information.

3.1  |  Information collection stage

First, we collect information from online game clients. With the
knowledge of the OS and service pack being used, it can be deter-
mined as to whether a hacking tool is running on the same base.
Information regarding the memory of the environment in which the
game is played can be obtained after collecting information about
the memory, and the DLL information employed by the game cli-
ents can be used to transfer the collected information to the server.
Figure 4 depicts a graphical representation of the collection process.

Information collected from a user PC is classified based
on the OS and OS version through the next step, the separa-
tion step. There are two methods for collecting information.

The first method of information collection is to check the
registered DLL information on the client and the memory state.
This method blocks any DLL that is not in the corresponding
loading list. However, a simple file name lookup is easy to by-
pass; thus, the cyclic redundancy check (CRC) logic must have a
vast CRC table of DLLs. This is because if Windows is updated,
a patching process occurs, and the DLL list must be managed
by the version of Windows, making it inconvenient to manage.

The second method that we propose is the collection of a
memory state list. If a program changes into a process environ-
ment, various changing areas of memory exist, including avail-
able and unavailable areas, readable areas, and writable areas.
Monitoring and managing these memory areas can effectively
identify an invasive hacking module. Listing 2 presents code
that verifies the memory protection constant for memory scan-
ning from a hacking tool or module. Because the attributes of
such accessible memory are limited, monitoring is possible.

3.2  |  Analysis stage

Malware uses APIs that are different from the APIs used by
non-malware, and memory is also used differently [16]. An API

F I G U R E 3   Game hack module detection method

Game
Client

Game
Client

Game
Client

Game
Client

USER

Game
Client

Game
Client

Game
Client
Game
Client

……1

COPORATION

2
Client

Memory Information

Windows XP
Service Pack 3

Windows 7
Service Pack 2

Windows 10
Service Pack 1

……

3 Analysis

Suspicious?

Game Client
Unsafety

Windows XP
Information

Game Client
Unsafety

Windows 7
Information

Game Client
Unsafety

Windows 10
Information

Game Client
Safety

Windows XP
Information

Game Client
Safety

Windows 7
Information

Game Client
Safety

Windows 10
Information

YesNo

F I G U R E 4   Information collection stage: (1) OS and version
information for each client is collected, (2) collected information
is transferred to the server, and (3) statistical operations on the
monitoring server are performed

Game ClientWindows 7 Game ClientWindows 10 Game ClientWindows 8

Game ClientWindows 8 Game ClientWindows 7 Game ClientWindows 10

Game Client Area

1 ……

2

Game Server Area 3

Information Collection Server

146  |     LEE et al.

used by malware has a different model from an API used by
non-malware. Therefore, when analyzing APIs that are not used
by non-malware, it is necessary to load the DLLs that provide
APIs in memory. Similarly, game hacking programs must use
the DLLs and APIs that are not used by the online game client,
which adds unused memory areas, resulting in a structure that is
different from the normal online game client memory map.

In the collection and separation of information steps, a
check is performed to confirm that the memory map structure
is in place according to each OS and version. As presented in
Table 2, by using each address's count of the memory, a different
user is selected from the existing client environment. Assuming
that 10 users play the game, it is highly likely that hack module

has penetrated if 1-4 new memory areas are added among those
10 users. Therefore, users of unusual environments are judged
using the hack module through a game history check. However,
it is problematic if previously unused memory areas exist, be-
cause of the definition of memory usage provided by Windows.

A detailed description of the memory access and usage
is provided by Microsoft MSDN. As presented in Table 3,
according to the memory protection constant, various rights
are granted, including accessible memory addresses, inacces-
sible addresses, accessible but only readable addresses, and
readable but not writable addresses. Therefore, a hacking tool
and hacking module first check the memory where PAGE_
READWRITE, PAGE_WRITECOPY, PAGE_EXECUTE_
READWRITE, and PAGE_EXECUTE_WRITECOPY
privileges exist. Therefore, we monitor the constants used in
the hacking tool. Figure 5 depicts the result, based on a study
of the state by memory addresses in the actual process.

The availability in the protection constant state is defined
in Table 4. As presented in Table 4, the “MEM_FREE”
state denotes an unused free area, and “MEM_RESERVE”
denotes an area where only addresses are assigned and
where the “MEM_COMMIT” virtual memory and physi-
cal memory are used. Accordingly, hacking tools can inject
code in the “MEM_FREE” and “MEM_COMMIT” states.
Thus, monitoring mainly proceeds for “MEM_FREE” and
“MEM_COMMIT.”

There is a memory area set to “MEM_PRIVATE” although
it is set to “MEM_COMMIT” in Figure 6. Monitoring needs
to proceed without the “MEM_PRIVATE” area because the
“MEM_PRIVATE” area is blocked from the access of other
processes. If the above conditions are met, the memory map
can be verified, as depicted in Figure 7.

3.3  |  Memory hacking protection
through monitoring

The entire monitoring process is illustrated in Figure 8.
We collect the memory addresses for each country,

OS, and service version. If there is a suspicious user
based on the monitored memory status, an investigation
of that user is initiated. Each investigated memory address

Listing 2  Checking memory protection constant for
memory scanning.

Address State Constant Count

00000000-00010000 MEM_FREE - 10

00010000-00020000 MEM_COMMIT PAGE_READWRITE 10

… … …

00121000-0013000 MEM_FREE PAGE_READWRITE 9

777D000-777D1000 MEM_COMMIT PAGE_EXECUTE_READ 1

… … …

7EFD8000-7EFDB000 MEM_COMMIT PAGE_READWRITE 10

T A B L E 2   Analysis table for collected
data (Windows 7 Enterprise Service Pack 1)

     |  147LEE et al.

is transferred to the server and stored. Then, we proceed
with statistics regarding the memory addresses that have
been recorded, and memory addresses with low counts are
investigated.

The reason for selecting the monitoring item is that the
WinAPI used in a DLL and code injection process calls the
VirtualAllocEx API internally to reserve and confirm mem-
ory usage, as shown in Listing 3.

In this process, malware sets the state value for those
marked “O” in the monitoring columns, as presented in
Table 3 and Table 4. It is an API that is used to inject code

T A B L E 3   Memory protection constants [17]

Constant Value Monitoring Description

PAGE_EXECUTE 0 × 10 X Enables execute access to the committed region of pages. An attempt to write to the
committed region results in an access violation. This flag is not supported by the
CreateFileMapping function

PAGE_EXECUTE_
READ

0 × 20 X Enables execute or read-only access to the committed region of pages. An attempt to write
to the committed region results in an access violation. Windows Server 2003 and Windows
XP: This attribute is not supported by the CreateFileMapping function until Windows XP
with SP2 and Windows Server 2003 with SP1

PAGE_EXECUTE_
READWRTIE

0 × 40 O Enables execute, read-only, or read/write access to the committed region of pages. Windows
Server 2003 and Windows XP: This attribute is not supported by the CreateFileMapping
function until Windows XP with SP2 and Windows Server 2003 with SP1

PAGE_EXECUTE_
WRITECOPY

0 × 80 O Enables execute, read-only, or copy-on-write access to a mapped view of a file mapping
object. An attempt to write to a committed copy-on-write page results in a private copy of
the page being made for the process. The private page is marked as PAGE_EXECUTE_
READWRITE, and the change is written to the new page. This flag is not supported by
the VirtualAlloc or VirtualAllocEx functions. Windows Vista, Windows Server 2003,
and Windows XP: This attribute is not supported by the CreateFileMapping function until
Windows Vista with SP1 and Windows Server 2008

PAGE_NOACCESS 0 × 01 X Disables all access to the committed region of pages. An attempt to read from, write to, or
execute the committed region results in an access violation. This flag is not supported by
the CreateFileMapping function

PAGE_
READONLY

0 × 02 X Enables read-only access to the committed region of pages. An attempt to write to the
committed region results in an access violation. If Data Execution Prevention is enabled,
an attempt to execute code in the committed region results in an access violation

PAGE_
READWRITE

0 × 04 O Enables read-only or read/write access to the committed region of pages. If Data Execution
Prevention is enabled, attempting to execute code in the committed region results in an
access violation

PAGE_
WRITECOPY

0 × 08 O Enables read-only or copy-on-write access to a mapped view of a file mapping object. An
attempt to write to a committed copy-on-write page results in a private copy of the page
being made for the process. The private page is marked as PAGE_READWRITE, and the
change is written to the new page. If Data Execution Prevention is enabled, attempting
to execute code in the committed region results in an access violation. This flag is not
supported by the VirtualAlloc or VirtualAllocEx functions

F I G U R E 5   Memory state in the actual process

Listing 3  VirtualAllocEx function.

148  |     LEE et al.

into other processes and malware; thus, when monitoring
the value of the set argument, external processes can check
the code insertion after access. We select memory addresses
that have read and write permissions for monitoring. The
reason is that online hacking tools and malware need space

T A B L E 4   The state of the pages in the region [18]

State Value Monitoring Description

MEM_COMMIT 0 × 1000 O Indicates committed pages for which physical storage has been allocated, either in
memory or in the paging file on disk.

MEM_FREE 0 × 10 000 O Indicates free pages not accessible to the calling process and available to be allocated.
For free pages, the information in the AllocationBase, AllocationProtect, Protect, and
Type members is undefined.

MEM_RESERVE 0 × 2000 O Indicates reserved pages where a range of the process's virtual address space is reserved
without any physical storage being allocated. For reserved pages, the information in the
Protect member is undefined.

MEM_IMAGE 0 × 1 000 000 X Indicates that the memory pages within the region are mapped into the view of an image
section.

MEM_MAPPED 0 × 40 000 X Indicates that the memory pages within the region are mapped into the view of a section.

MEM_PRIVATE 0 × 20 000 X Indicates that the memory pages within the region are private (ie, not shared by other
processes).

F I G U R E 6   Protection constants inside the process

F I G U R E 7   Memory to monitor

F I G U R E 8   Monitoring stage: (1) information regarding the OS,
version, and memory map from each client is collected, (2) collected
information is delivered to the game servers, (3) collected information
is separated, (4) memory map with low frequency is selected from
separate information, and (5) the corresponding user is prohibited from
using it

Game Client Area

Game Server Area

Windows 7

……

Game
Client
Game
Client

Game
Client
Game
Client

Windows 8

……

Game
Client
Game
Client

Game
Client
Game
Client

Windows 10

……

……Game
Client
Game
Client

Game
Client
Game
Client

Avaliability Zone

1

2

Information
Collection Server

OS

OS Version

Memory Map

3

Extraction of less used
memory address

4

Suspicious

Game
Terminate

5

     |  149LEE et al.

to read and write their modules into memory. If malware
repeats writing or reading from other memory, it causes the
program to crash and either hang or produce the “blue screen
of death.” Therefore, an online game hacking tool is pro-
grammed to secure and operate the weakness to be used in
the tool's module.

4  |   EXPERIMENTAL RESULT

We strove to identify a structure that can collect information
from existing client environments and manage and detect the
information detected from a central server. Because the mem-
ory structure of each service is known to the game developer,
it is possible to check the used and unused areas in the situa-
tion wherein the service is running. Additionally, because used
and unused modules can also be checked, our experiment is
expected to reduce the number of false negatives occurring in
the process of detecting existing unknown malware.

The experiment was conducted under the following
conditions.

1.	 The Client.exe program on a Windows PC was run, and
the resulting memory map was transferred to the server.

2.	 The memory map monitored by a DLL injection of the
virtual hacking tool was checked.

4.1  |  Collecting a memory map on a
Windows PC

During the collection of the memory maps, we observed
that different addresses were assigned each time a specific
Client.exe was running. However, because all DLL lists are
assigned under the same conditions, it is possible to detect
DLL injection, as depicted in Figure 9. Additionally, when
comparing the memory structures of PC A and PC B, dif-
ferences in the DLL region can be found, as depicted in
Figure 10.

In this situation, as depicted in Figure 11, Microsoft
was unable to maintain the memory map with the same
address and size because the security level of the address
space layout randomization was increased so that the mem-
ory map could not be used in the same environment. Each
PC's area is unique; thus, monitoring is not possible under
the same conditions. Therefore, we can monitor based on
the user and check whether DLL injection has been added.

4.2  |  Collecting the memory map of the user

As the result of Section 4.1 shows, monitoring of the area
where a certain DLL list exists can be performed only in

the unchanged section. As a result of testing, all the user-
defined areas were variable areas used by the application
to be protected. The more the variables that are used, the
more the likely it is for them to change. Therefore, mali-
cious changes can be effectively judged when monitoring
the area that uses DLLs outside the areas used by the game
application.

Therefore, we created a memory map for each user and
counted the memory addresses used, as presented in Table 5.
Then, when a different type of domain was added or changed,
it was detected as a DLL injection.

4.3  |  Overhead for determining
abnormal users

We prepared the following formula to measure the overhead
for our proposed methodology.

The description of each factor is as follows.
OT = overhead time.
J

c
 = number of executions required for decision.

D
ac

 = average number of game runs per day.
In order to improve data reliability, 400 cases are needed

[19]. Thus, the time it takes for one user to execute 400 cases
is 40 days when running 10 times a day on average [20].

OT =

J
c

D
ac

.

F I G U R E 9   Detecting DLL injection

F I G U R E 1 0   Differences in DLL regions

150  |     LEE et al.

Since this is an average value, it is possible to judge an ab-
normal user, even if it is a high usage user, in 40 days or less.

5  |   CONCLUSION

We aimed to obtain the same type of memory map in the
same OS and the same country; however, it was confirmed
that the injected DLL could be detected when acquiring in-
formation by each user monitoring the memory map.

Because the memory area used by an application varies
from time to time, it is extremely difficult to monitor the
area. Therefore, this approach to securing online gaming
requires further study. Additionally, a continuous study
of the items and methods that can be monitored for each
Windows OS needs to be conducted, rather than focusing
on the insurmountable task of monitoring each user.

ORCID
Kyounggon Kim https://orcid.org/0000-0002-5675-4253

REFERENCES
	 1.	 H. Kwon et al., Crime scene reconstruction: Online gold farming net-

work analysis, IEEE Trans. Inf. Forensics Secur. 12 (2016), 544–556.

	 2.	 E. Lee et al., You are a game bot!: Uncovering game bots in
MMORPGs via self-similarity in the wild, in Proc. NDSS (San
Diego, CA, USA), Feb. 2016, doi: 10.14722/​ndss.2016.23436

	 3.	 H. Kim, S. Yang, and H. K. Kim, Crime scene re-investigation: A
postmortem analysis of game account stealers' behaviors, in Proc.
Annu. Workshop Netw. Syst. Support Game (Taipei, Taiwan),
June 2017, pp. 1–6.

	 4.	 J. Woo, H. J. Choi, and H. K. Kim, An automatic and proactive
identity theft detection model in mmorpgs, Appl. Math 6 (2012),
291–302.

	 5.	 H. B. Jang, K. G. Kim, and S. J. Lee, A study on technical counter-
measures according to game service breach types, Inf. Systems
Rev. 9 (2007), 83–98.

	 6.	 Microsoft, Dynamic-link libraries, 2011, Available from: https://
docs.micro​soft.com/ko-kr/windo​ws/win32/​dlls/dynam​ic-link-libra​
ries?redir​ected​from=MSDN [last accessed March 2020]

	 7.	 Microsoft, Createremotethread function, 2018, Available from: https://
docs.micro​soft.com/en-us/windo​ws/win32/​api/proce​ssthr​eadsa​pi/nf-
proce​ssthr​eadsa​pi-creat​eremo​tethread [last accessed March 2020]

	 8.	 M. Jang, H. Kim, and Y. Yun, Detection of DLL inserted by win-
dows malicious code, in Proc. Int. Conf. Convergence Inf. Technol.
(Gyeongju, Rep. of Korea), Nov. 2007, pp. 1059–1064.

	 9.	 W.-C. Feng, E. Kaiser, and T. Schluessler, Stealth measurements for cheat
detection in on-line games, in Proc. ACM SIGCOMM Workshop Netw.
Syst. Support Games (Worcester, MA, USA), Oct. 2008, pp. 15–20.

	10.	 F. Desheng, S. Zhou, and C. Cao, A windows rootkit detec-
tion method based on cross-view, in Proc. Int. Conf. E-Product
E-Service E-Entertainment (Henan, Chian), 2010, pp. 1–3.

F I G U R E 1 1   Address space layout randomization of DLLs

T A B L E 5   Create memory map by user

User Item Normal Include hack module Description

A Memory address 00000000-7FFF0000 00000000-7FFF0000 No difference

Memory count 262 286 Hack module used more

MEM_COMMIT 172 187 Hack module used more

MEM_RESERVE 35 41 Hack module used more

MEM_FREE 54 58 Hack module used more

B Memory address 00000000-7FFF0000 00000000-7FFF0000 No difference

Memory Count 262 262

MEM_COMMIT 172 172

MEM_RESERVE 35 35

MEM_FREE 54 54

https://orcid.org/0000-0002-5675-4253
https://orcid.org/0000-0002-5675-4253
https://doi.org/10.14722/ndss.2016.23436
https://docs.microsoft.com/ko-kr/windows/win32/dlls/dynamic-link-libraries?redirectedfrom=MSDN
https://docs.microsoft.com/ko-kr/windows/win32/dlls/dynamic-link-libraries?redirectedfrom=MSDN
https://docs.microsoft.com/ko-kr/windows/win32/dlls/dynamic-link-libraries?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

     |  151LEE et al.

	11.	 J. Milosevic, A. Ferrante, and M. Malek, What does the memory
say? Towards the most indicative features for efficient malware
detection, in Proc. IEEE Annu. Consumer Commun. Netw. Conf.
(Las Vegas, NV, USA), 2016, pp. 759–764.

	12.	 X. Zhixing et al., Malware detection using machine learning based
analysis of virtual memory access patterns, Design, Autom. Test
Eur. Conf. Exhibition (Lausanne, Switzerland), 2017, pp. 169–174.

	13.	 R. Sihwail, K. Omar, and K. A. Z. Ariffin, A survey on mal-
ware analysis techniques: Static, dynamic, hybrid and memory
analysis, Int. J. Adv. Sci., Eng. Inf. Technol. 8 (2018), no. 4-2,
1662–1671.

	14.	 R. Mosli et al., Automated malware detection using artifacts in fo-
rensic memory images, in Proc. IEEE Symp. Technol. Homeland
Security (Waltham, MA, USA), May 2016, pp. 1–6.

	15.	 R. Mosli, A behavior-based approach for malware detection, in
Proc. IFIP Int. Conf. Digital Forensics (Orlando, FL, USA), 2017,
pp. 187–201.

	16.	 M. Wagner et al., A survey of visualization systems for malware
analysis, in Proc. Eurographics Conf. Visualization (Cagliari,
Italy), 2015, pp. 105–125.

	17.	 Microsoft, Memory protection constants, 2018, Available from:
https://docs.micro​soft.com/en-us/windo​ws/deskt​op/memor​y/
memor​y-prote​ction​-const​ants [last accessed January 2020].

	18.	 Microsoft, Memory_basic_information structure, 2018, Available
from: https://docs.micro​soft.com/en-us/windo​ws/win32/​api/winnt/​
ns-winnt​-memory_basic_infor​mation [last accessed January
2020].

	19.	 L. Al-Haddad, C. W. Morris, and L. Boddy, Training radial basis
function neural networks: Effects of training set size and imbal-
anced training sets, J. Microbiol. Methods 43 (2000), 33–44.

	20.	 M. Hong and H.-M. Lee, A study on characteristics of serious
game user through implementation of mobile sequence game, The
KIPS Transactions: Part A 19 (2012), no. 3, 155–160.

AUTHOR BIOGRAPHIES

Chang Seon Lee received his BS de-
gree in computer science from
Academic Credit Bank System in 2009,
MS degree in information security
from Chonnam National University in
2013, and PhD at the Department of
Business Administration, Sangmyung

University, in 2018. He began studying security in 2000
and has won a number of CTFs. After serving in the Navy
Cyber Investigation Service, he became interested in client
security. Since 2006, he has offered consulting services
through a company, and since 2008, he has worked on cli-
ent security and abuser detection. He is currently working
on system design, analysis, and monitoring to detect signs
of abuse and fraud for message, mobile game, payment,
virtual currency, and financial services at LINE Corporation.
He has also published introduction to college textbooks
on computer security and forensics. His research

interests include money laundering detection and analysis,
monitoring system design, solving security problems in
financial computing based on user behavior analysis and
data mining, and malware analysis.

Huy Kang Kim received his BS de-
gree in industrial management and MS
degree and PhD in industrial and sys-
tems engineering from KAIST in
1998, 2000, and 2009, respectively. He
founded A3 Security Consulting, the
first information security consulting

company in South Korea in 1999. He was Technical
Director and Head of the Information Security Department
of NCSOFT from 2004 to 2010. He is currently Associate
Professor at the Graduate School of Information Security,
Korea University. His research interests include solving
security problems in online games based on user behavior
analysis and data mining.

Hey Rin Won received her BS degree
in Information Security from Seoul
Women's University in 2020. She was
awarded the Best of the Best—Next
Generation Security Leader Award,
which was sponsored by Korea
Information Technology Research

Institute. Her research interests include vulnerability anal-
ysis and security systems using artificial intelligence.

Kyounggon Kim received his BS de-
gree in computer science from
Soongsil University in 2008, and MS
degree and PhD in information secu-
rity from Korea University in 2015 and
2020, respectively. He is currently an
Assistant Professor at the Department

of Forensic Sciences, Naif Arab University for Security
and Sciences (NAUSS). He has performed penetration
testing for over 130 clients in various industries when he
worked for Deloitte, PwC, and boutique consulting firms
during over 15 years. He was awarded 6th place at DefCon
CTF in 2007 and a first prize at the First Hacking Defense
Contest hosted by the Korea Information Security Agency.
He has authored a book on Internet hacking and security
and has translated numerous security books. His research
interests include vulnerability analysis, smart city secu-
rity, and CPS and IoT security.

https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information

