References
- W.-L. L. Tai and Z.-J. J. Liao, Image self-recovery with watermark self-embedding, Signal Process. Image Commun. 65 (2018), 11-25. https://doi.org/10.1016/j.image.2018.03.011
- D. Singh and S. K. Singh, DCT based efficient fragile watermarking scheme for image authentication and restoration, Multimed. Tools Applicat. 76 (2017), no. 1, 953-977. https://doi.org/10.1007/s11042-015-3010-x
- B. B. Haghighi, A. H. Taherinia, and A. H. Mohajerzadeh, TRLG: Fragile blind quad watermarking for image tamper detection and recovery by providing compact digests with quality optimized using LWT and GA, Inf. Sci. 486 (2018), 204-230. https://doi.org/10.1016/j.ins.2019.02.055
- O. Benrhouma, H. Hermassi, and S. Belghith, Security analysis and improvement of an active watermarking system for image tampering detection using a self-recovery scheme, Multimed. Tools Applicat. 76 (2017), no. 20, 21133-21156. https://doi.org/10.1007/s11042-016-4054-2
- D. Singh and S. K. Singh, Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability, J. Vis. Commun. Image Represent. 38 (2016), 775-789. https://doi.org/10.1016/j.jvcir.2016.04.023
- K. Sreenivas and V. Kamakshiprasad, Improved image tamper localisation using chaotic maps and self-recovery, J. Vis. Commun. Image Represent. 49 (2017), 164-176. https://doi.org/10.1016/j.jvcir.2017.09.001
- X. Zhang et al., Reference sharing mechanism for watermark self-embedding, IEEE Trans. Image Process. 20 (2011), no. 2, 485-495. https://doi.org/10.1109/TIP.2010.2066981
- X. Zhang et al., Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction, IEEE Trans. Inf. Forensics Secur. 6 (2011), no. 4, 1223-1232. https://doi.org/10.1109/TIFS.2011.2159208
- X. Zhang et al., Self-embedding watermark with flexible restoration quality, Multimed. Tools Applicat. 54 (2011), no. 2, 385-395. https://doi.org/10.1007/s11042-010-0541-z
- Z. Qian et al., Image self-embedding with high-quality restoration capability, Digit. Signal Process. 21 (2011), no. 2, 278-286. https://doi.org/10.1016/j.dsp.2010.04.006
- Y. Huo, H. He, and F. Chen, Alterable-capacity fragile watermarking scheme with restoration capability, Opt. Commun. 285 (2012), no. 7, 1759-1766. https://doi.org/10.1016/j.optcom.2011.12.044
- C. Qin, C.-C. Chang, and K.-N. Chen, Adaptive self-recovery for tampered images based on VQ indexing and inpainting, Signal Process. 93 (2013), no. 4, 933-946. https://doi.org/10.1016/j.sigpro.2012.11.013
- C. Qin, C.-C. Chang, and P.-Y. Chen, Self-embedding fragile watermarking with restoration capability based on adaptive bit allocation mechanism, Signal Process. 92 (2012), no. 4, 1137-1150. https://doi.org/10.1016/j.sigpro.2011.11.013
- P. Korus and A. Dziech, Adaptive self-embedding scheme with controlled reconstruction performance, IEEE Trans. Inf. Forensics Secur. 9 (2014), no. 2, 169-181. https://doi.org/10.1109/TIFS.2013.2295154
- J. M. Zain and A. R. M. Fauzi, Medical image watermarking with tamper detection and recovery, in Proc. Int. Conf. IEEE Eng. Med. Biol. Soc. (New York, USA), Aug. 2006, pp. 3270-3273.
- S. Wang and S. Tsai, Automatic image authentication and recovery using fractal code embedding and image inpainting, Pattern Recognit. 41 (2008), no. 2, 701-712. https://doi.org/10.1016/j.patcog.2007.05.012
- C. Cruz-Ramos et al., Image authentication scheme based on self-embedding watermarking, in Proc. Iberoamer. Congr. Pattern Recognit. (Guadalajara, Mexico), Nov. 2009, pp. 1005-1012.
- K.-S. Kim et al., Region-based tampering detection and recovery using homogeneity analysis in quality-sensitive imaging, Comput. Vis. Image Underst. 115 (2011), no. 9, 1308-1323. https://doi.org/10.1016/j.cviu.2011.05.001
- R. Eswaraiah and E. S. Reddy, Medical image watermarking technique for accurate tamper detection in ROI and exact recovery of ROI, Int. J. Telemed. Appl. 2014 (2014), 1-10.
- P. Korus and A. Dziech, Efficient method for content reconstruction with self-embedding, IEEE Trans. Image Process. 22 (2013), no. 3, 1134-1147. https://doi.org/10.1109/TIP.2012.2227769
- P. Korus, J. Bialas, and A. Dziech, Towards practical self-embedding for JPEG-compressed digital images, IEEE Trans. Multimed. 17 (2015), no. 2, 157-170. https://doi.org/10.1109/TMM.2014.2368696
- S. Sarreshtedari and M. A. Akhaee, A source-channel coding approach to digital image protection and self-recovery, IEEE Trans. Image Process. 24 (2015), no. 7, 2266-2277. https://doi.org/10.1109/TIP.2015.2414878
- S. Sarreshtedari, A. Abbasfar, and M. Ali, A joint source - channel coding approach to digital image self-recovery, Signal Image Video Process. 11 (2017), no. 7, 1371-1378. https://doi.org/10.1007/s11760-017-1095-6
- N. Daneshmandpour, H. Danyali, and M. S. Helfroush, Scalable image self-embedding based on dual-rate SPIHT-LDPC reference generation scheme, Radioeng. 28 (2019), no. 1, 199-206.
- N. Daneshmandpour, H. Danyali, and M. S. Helfroush, Multi-rate reference embedding for highly-scalable self-recovery using fuzzy mamdani, J. Intell. Fuzzy Syst. 37 (2019), no. 6, 1-11.
- T. Liu et al., Learning to detect a salient object, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011), no. 2, 353-367. https://doi.org/10.1109/TPAMI.2010.70
- A. Said and W. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6 (1996), no. 3, 243-250. https://doi.org/10.1109/76.499834
- J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. Signal Process. 41 (1993), no. 12, 3445-3462. https://doi.org/10.1109/78.258085
- S. T. Hsiang, Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling, in Proc. DCC 2001. Data Comp. Conf. IEEE Comput. Soc. (Snowbird, UT, USA), Mar. 2001, pp. 83-92.