DOI QR코드

DOI QR Code

Understanding the genetics of systemic lupus erythematosus using Bayesian statistics and gene network analysis

  • Nam, Seoung Wan (Department of Rheumatology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Lee, Kwang Seob (Severance Hospital, Yonsei University College of Medicine) ;
  • Yang, Jae Won (Department of Nephrology, Yonsei University Wonju College of Medicine) ;
  • Ko, Younhee (Division of Biomedical Engineering, Hankuk University of Foreign Studies) ;
  • Eisenhut, Michael (Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust) ;
  • Lee, Keum Hwa (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Shin, Jae Il (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kronbichler, Andreas (Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck)
  • Received : 2020.04.11
  • Accepted : 2020.06.23
  • Published : 2021.05.15

Abstract

The publication of genetic epidemiology meta-analyses has increased rapidly, but it has been suggested that many of the statistically significant results are false positive. In addition, most such meta-analyses have been redundant, duplicate, and erroneous, leading to research waste. In addition, since most claimed candidate gene associations were false-positives, correctly interpreting the published results is important. In this review, we emphasize the importance of interpreting the results of genetic epidemiology meta-analyses using Bayesian statistics and gene network analysis, which could be applied in other diseases.

Keywords

Acknowledgement

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03032457) and Hankuk University of Foreign Studies Research Fund.

References

  1. Ioannidis JP. The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. Milbank Q 2016;94:485-514. https://doi.org/10.1111/1468-0009.12210
  2. Pan Z, Trikalinos TA, Kavvoura FK, Lau J, Ioannidis JP. Local literature bias in genetic epidemiology: an empirical evaluation of the Chinese literature. PLoS Med 2005;2:e334. https://doi.org/10.1371/journal.pmed.0020334
  3. Park JH, Eisenhut M, van der Vliet HJ, Shin JI. Statistical controversies in clinical research: overlap and errors in the meta-analyses of microRNA genetic association studies in cancers. Ann Oncol 2017;28:1169-82. https://doi.org/10.1093/annonc/mdx024
  4. Jeong DY, Lee SW, Park YH, Choi JH, Kwon YW, Moon G, et al. Genetic variation and systemic lupus erythematosus: A field synopsis and systematic meta-analysis. Autoimmun Rev 2018;17:553-66. https://doi.org/10.1016/j.autrev.2017.12.011
  5. Park JH, Geum DI, Eisenhut M, van der Vliet HJ, Shin JI. Bayesian statistical methods in genetic association studies: Empirical examination of statistically non-significant Genome Wide Association Study (GWAS) meta-analyses in cancers: A systematic review. Gene 2019;685:170-8. https://doi.org/10.1016/j.gene.2018.10.057
  6. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356-69. https://doi.org/10.1038/nrg2344
  7. Panagiotou OA, Ioannidis JP, Genome-Wide Significance P. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol 2012;41:273-86. https://doi.org/10.1093/ije/dyr178
  8. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA, et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 2005;77:685-93. https://doi.org/10.1086/496902
  9. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2007;39:865-9. https://doi.org/10.1038/ng2064
  10. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007;39:989-94. https://doi.org/10.1038/ng2089
  11. Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ. Genome-wide significance for dense SNP and resequencing data. Genet Epidemiol 2008;32:179-85. https://doi.org/10.1002/gepi.20292
  12. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004;96:434-42. https://doi.org/10.1093/jnci/djh075
  13. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 2007;81:208-27. https://doi.org/10.1086/519024
  14. Barrdahl M, Rudolph A, Hopper JL, Southey MC, Broeks A, Fasching PA, et al. Gene-environment interactions involving functional variants: Results from the Breast Cancer Association Consortium. Int J Cancer 2017;141:1830-40. https://doi.org/10.1002/ijc.30859
  15. Braem MG, Schouten LJ, Peeters PH, van den Brandt PA, Onland-Moret NC. Genetic susceptibility to sporadic ovarian cancer: a systematic review. Biochim Biophys Acta 2011;1816:132-46.
  16. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 2008;299:2423-36. https://doi.org/10.1001/jama.299.20.2423
  17. Engels EA, Wu X, Gu J, Dong Q, Liu J, Spitz MR. Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res 2007;67:6520-7. https://doi.org/10.1158/0008-5472.CAN-07-0370
  18. Montazeri Z, Theodoratou E, Nyiraneza C, Timofeeva M, Chen W, Svinti V, et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. Int J Epidemiol 2016;45:186-205. https://doi.org/10.1093/ije/dyv185
  19. Pathak A, Wenzlaff AS, Hyland PL, Cote ML, Keele GR, Land S, et al. Apoptosis-related single nucleotide polymorphisms and the risk of non-small cell lung cancer in women. J Cancer Ther Res 2014;3:10.7243/2049-7962-3-1.
  20. Theodoratou E, Montazeri Z, Hawken S, Allum GC, Gong J, Tait V, et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal cancer. J Natl Cancer Inst 2012;104:1433-57. https://doi.org/10.1093/jnci/djs369
  21. Vijayakrishnan J, Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 2010;95:1405-14. https://doi.org/10.3324/haematol.2010.022095
  22. Lucke JF. A critique of the false-positive report probability. Genet Epidemiol 2009;33:145-50. https://doi.org/10.1002/gepi.20363
  23. Crow MK. Advances in understanding the role of type I interferons in systemic lupus erythematosus. Curr Opin Rheumatol 2014;26:467-74. https://doi.org/10.1097/BOR.0000000000000087
  24. Ghodke-Puranik Y, Niewold TB. Genetics of the type I interferon pathway in systemic lupus erythematosus. Int J Clin Rheumtol 2013;8.
  25. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001;294:1540-3. https://doi.org/10.1126/science.1064890
  26. Niewold TB. Interferon alpha as a primary pathogenic factor in human lupus. J Interferon Cytokine Res 2011;31:887-92. https://doi.org/10.1089/jir.2011.0071
  27. Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000;60:1143-51. https://doi.org/10.1016/S0006-2952(00)00404-4
  28. Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J Autoimmun 2015;64:125-36. https://doi.org/10.1016/j.jaut.2015.08.004
  29. Sevimoglu T, Arga KY. The role of protein interaction networks in systems biomedicine. Comput Struct Biotechnol J 2014;11:22-7. https://doi.org/10.1016/j.csbj.2014.08.008
  30. Taye B, Vaz C, Tanavde V, Kuznetsov VA, Eisenhaber F, Sugrue RJ, et al. Benchmarking selected computational gene network growing tools in context of virus-host interactions. Sci Rep 2017;7:5805. https://doi.org/10.1038/s41598-017-06020-6
  31. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010;38:W214-20. https://doi.org/10.1093/nar/gkq537
  32. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-15. https://doi.org/10.1093/nar/gks1094
  33. Ko Y, Cho M, Lee JS, Kim J. Identification of disease comorbidity through hidden molecular mechanisms. Sci Rep 2016;6:39433. https://doi.org/10.1038/srep39433
  34. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2007;2:2366-82. https://doi.org/10.1038/nprot.2007.324
  35. Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015;47:1457-64. https://doi.org/10.1038/ng.3434
  36. Oparina NY, Delgado-Vega AM, Martinez-Bueno M, Magro-Checa C, Fernandez C, Castro RO, et al. PXK locus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility gene ABHD6. Ann Rheum Dis 2015;74:e14. https://doi.org/10.1136/annrheumdis-2013-204909
  37. Vaughn SE, Foley C, Lu X, Patel ZH, Zoller EE, Magnusen AF, et al. Lupus risk variants in the PXK locus alter B-cell receptor internalization. Front Genet 2014;5:450.
  38. National Center for Biotechnology Information. RefSeq: NCBI Reference Sequence Database [Internet]. Bethesda (MD): National Center for Biotechnology Information; [cited 2020 April 9]. Available from: https://www.ncbi.nlm.nih.gov/refseq/.
  39. Lessard CJ, Sajuthi S, Zhao J, Kim K, Ice JA, Li H, et al. Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol 2016;68:1197-209. https://doi.org/10.1002/art.39548
  40. Zhang Y, Yang J, Zhang J, Sun L, Hirankarn N, Pan HF, et al. Genome-wide search followed by replication reveals genetic interaction of CD80 and ALOX5AP associated with systemic lupus erythematosus in Asian populations. Ann Rheum Dis 2016;75:891-8. https://doi.org/10.1136/annrheumdis-2014-206367
  41. Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, et al. Confirmation of five novel susceptibility loci for systemic lupus erythematosus (SLE) and integrated network analysis of 82 SLE susceptibility loci. Hum Mol Genet 2017;26:1205-16. https://doi.org/10.1093/hmg/ddx026
  42. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet 2016;48:940-6. https://doi.org/10.1038/ng.3603
  43. Bergeron D. Identification et caracterisation d'une deuxieme proteine codee par le gene ATXN1. Sherbrooke (CA): Universite de Sherbrooke, 2013.
  44. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996;16:6083-95. https://doi.org/10.1128/MCB.16.11.6083
  45. Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 2015;520:558-62. https://doi.org/10.1038/nature14154
  46. Yokoyama K, Su Ih, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A, et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP3 receptor. EMBO J 2002;21:83-92. https://doi.org/10.1093/emboj/21.1.83
  47. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 2012;39:10627-35. https://doi.org/10.1007/s11033-012-1952-x
  48. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Associations between the functional CD40 rs4810485 G/T polymorphism and susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Lupus 2015;24:1177-83. https://doi.org/10.1177/0961203315583543
  49. Lessard CJ, Adrianto I, Kelly JA, Kaufman KM, Grundahl KM, Adler A, et al. Identification of a systemic lupus erythematosus susceptibility locus at 11p13 between PDHX and CD44 in a multiethnic study. Am J Hum Genet 2011;88:83-91. https://doi.org/10.1016/j.ajhg.2010.11.014
  50. Sheng YJ, Xu JH, Wu YG, Zuo XB, Gao JP, Lin Y, et al. Association analyses confirm five susceptibility loci for systemic lupus erythematosus in the Han Chinese population. Arthritis Res Ther 2015;17:85. https://doi.org/10.1186/s13075-015-0602-9
  51. Shojaa M, Aghaie M, Qorbani M, Khashayar P, Amoli M, Keshtkar AA, et al. Association of the CTLA-4 1722TC polymorphism and systemic lupus erythematosus: a systematic review and meta analysis. Med J Islam Repub Iran 2014;28:132.
  52. Zhang J, Zhang Y, Yang J, Zhang L, Sun L, Pan HF, et al. Three SNPs in chromosome 11q23.3 are independently associated with systemic lupus erythematosus in Asians. Hum Mol Genet 2014;23:524-33. https://doi.org/10.1093/hmg/ddt424
  53. Odhams CA, Roberts AL, Vester SK, Duarte CST, Beales CT, Clarke AJ, et al. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in Systemic Lupus Erythematosus. Nat Commun 2019;10:2164. https://doi.org/10.1038/s41467-019-10106-2
  54. Wang C, Ahlford A, Jarvinen TM, Nordmark G, Eloranta ML, Gunnarsson I, et al. Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. Eur J Hum Genet 2013;21: 994-9. https://doi.org/10.1038/ejhg.2012.277
  55. Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet 2010;6:e1000841. https://doi.org/10.1371/journal.pgen.1000841
  56. Zhu XW, Wang Y, Wei YH, Zhao PP, Wang XB, Rong JJ, et al. Comprehensive assessment of the association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: evidence from a meta-analysis. Sci Rep 2016;6:31617. https://doi.org/10.1038/srep31617
  57. Zhang Y, Zhang J, Yang J, Wang Y, Zhang L, Zuo X, et al. Meta-analysis of GWAS on two Chinese populations followed by replication identifies novel genetic variants on the X chromosome associated with systemic lupus erythematosus. Hum Mol Genet 2015;24:274-84. https://doi.org/10.1093/hmg/ddu429
  58. Niu Z, Zhang P, Tong Y. Value of HLA-DR genotype in systemic lupus erythematosus and lupus nephritis: a meta-analysis. Int J Rheum Dis 2015;18:17-28. https://doi.org/10.1111/1756-185X.12528
  59. Castano-Rodriguez N, Diaz-Gallo LM, Pineda-Tamayo R, Rojas-Villarraga A, Anaya JM. Meta-analysis of HLA-DRB1 and HLA-DQB1 polymorphisms in Latin American patients with systemic lupus erythematosus. Autoimmun Rev 2008;7:322-30. https://doi.org/10.1016/j.autrev.2007.12.002
  60. Lee YH, Bae SC, Song GG. Meta-analysis of associations between functional HLA-G polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis. Rheumatol Int 2015;35:953-61. https://doi.org/10.1007/s00296-014-3155-3
  61. Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A 1998;95:4510-5. https://doi.org/10.1073/pnas.95.8.4510
  62. Kim K, Brown EE, Choi CB, Alarcon-Riquelme ME, Biolupus, Kelly JA, et al. Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Ann Rheum Dis 2012;71:1809-14. https://doi.org/10.1136/annrheumdis-2011-201110
  63. J de AS, C A, P SG, S C. Systemic lupus erythematosus: old and new susceptibility genes versus clinical manifestations. Curr Genomics 2014;15:52-65. https://doi.org/10.2174/138920291501140306113715
  64. Qi JH, Qi J, Xiang LN, Nie G. Association between IL-21 polymorphism and systemic lupus erythematosus: a meta-analysis. Genet Mol Res 2015;14:9595-603. https://doi.org/10.4238/2015.August.14.22
  65. Webb R, Merrill JT, Kelly JA, Sestak A, Kaufman KM, Langefeld CD, et al. A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 2009;60:2402-7. https://doi.org/10.1002/art.24658
  66. Katkam SK, Rajasekhar L, Kumaraswami K, Kutala VK. Association of IL -6 -174 G>C polymorphism with the risk of SLE among south Indians: evidence from case-control study and meta-analysis. Lupus 2017;26:1491-501. https://doi.org/10.1177/0961203317711010
  67. Chang Y, Sheng Y, Cheng Y, Lin Y, Zhu Z, Wen L, et al. Downregulated expression of LBH mRNA in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. J Dermatol 2016;43:99-102. https://doi.org/10.1111/1346-8138.13006
  68. Flesher DL, Sun X, Behrens TW, Graham RR, Criswell LA. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev Clin Immunol 2010;6:461-79. https://doi.org/10.1586/eci.10.8
  69. Lee YH, Lee HS, Choi SJ, Ji JD, Song GG. The association between the mannose-binding lectin codon 54 polymorphism and systemic lupus erythematosus: a meta-analysis update. Mol Biol Rep 2012;39:5569-74. https://doi.org/10.1007/s11033-011-1361-6
  70. Webb R, Wren JD, Jeffries M, Kelly JA, Kaufman KM, Tang Y, et al. Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum 2009;60:1076-84. https://doi.org/10.1002/art.24360
  71. Tang ZM, Wang P, Chang PP, Hasahya T, Xing H, Wang JP, et al. Association between rs2431697 T allele on 5q33.3 and systemic lupus erythematosus: case-control study and meta-analysis. Clin Rheumatol 2015;34:1893-902. https://doi.org/10.1007/s10067-015-3045-4
  72. Lee YH, Song GG. Correlation between circulating osteopontin level in systemic lupus erythematosus and disease activity and associations between osteopontin polymorphisms and disease susceptibility: a metaanalysis. Lupus 2017;26:132-8. https://doi.org/10.1177/0961203316655214
  73. Tan W, Sunahori K, Zhao J, Deng Y, Kaufman KM, Kelly JA, et al. Association of PPP2CA polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis Rheum 2011;63:2755-63. https://doi.org/10.1002/art.30452
  74. Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, et al. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. PLoS Genet 2011;7:e1002406. https://doi.org/10.1371/journal.pgen.1002406
  75. Li Y, He X, Schembri-King J, Jakes S, Hayashi J. Cloning and characterization of human Lnk, an adaptor protein with pleckstrin homology and Src homology 2 domains that can inhibit T cell activation. J Immunol 2000;164:5199-206. https://doi.org/10.4049/jimmunol.164.10.5199
  76. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004;447:610-8. https://doi.org/10.1007/s00424-003-1101-4
  77. Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y, et al. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 2014;41:375-88. https://doi.org/10.1016/j.immuni.2014.08.011
  78. Lee YH, Choi SJ, Ji JD, Song GG. Association between toll-like receptor polymorphisms and systemic lupus erythematosus: a meta-analysis update. Lupus 2016;25:593-601. https://doi.org/10.1177/0961203315622823
  79. Lessard CJ, Adrianto I, Ice JA, Wiley GB, Kelly JA, Glenn SB, et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet 2012;90:648-60. https://doi.org/10.1016/j.ajhg.2012.02.023
  80. Bates JS, Lessard CJ, Leon JM, Nguyen T, Battiest LJ, Rodgers J, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun 2009;10:470-7. https://doi.org/10.1038/gene.2009.31
  81. Zhang MY, Yang XK, Pan HF, Ye DQ. Associations between TNFAIP3 gene polymorphisms and systemic lupus erythematosus risk: an updated meta-analysis. HLA 2016;88:245-52. https://doi.org/10.1111/tan.12908
  82. Yang ZC, Xu F, Tang M, Xiong X. Association between TNF-alpha promoter -308 A/G polymorphism and systemic lupus erythematosus susceptibility: a case-control study and meta-analysis. Scand J Immunol 2017;85:197-210. https://doi.org/10.1111/sji.12516
  83. Kataoka N, Bachorik JL, Dreyfuss G. Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol 1999;145:1145-52. https://doi.org/10.1083/jcb.145.6.1145
  84. Kurreeman FA, Goulielmos GN, Alizadeh BZ, Rueda B, HouwingDuistermaat J, Sanchez E, et al. The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 2010;69:696-9. https://doi.org/10.1136/ard.2008.106567
  85. Ge M, Yu W, Shi J, Zhang J, Wang M, Feng S, et al. TRAF1/C5 rs10818488 polymorphism is not a genetic risk factor for acquired aplastic anemia in a Chinese population. Hum Immunol 2015;76:19-21.
  86. Namjou B, Choi CB, Harley IT, Alarcon-Riquelme ME, Network B, Kelly JA, et al. Evaluation of TRAF6 in a large multiancestral lupus cohort. Arthritis Rheum 2012;64:1960-9. https://doi.org/10.1002/art.34361
  87. Diaz-Gallo LM, Sanchez E, Ortego-Centeno N, Sabio JM, GarciaHernandez FJ, de Ramon E, et al. Evidence of new risk genetic factor to systemic lupus erythematosus: the UBASH3A gene. PLoS One 2013;8:e60646. https://doi.org/10.1371/journal.pone.0060646
  88. Parmar AS, Lappalainen M, Paavola-Sakki P, Halme L, Farkkila M, Turunen U, et al. Association of celiac disease genes with inflammatory bowel disease in Finnish and Swedish patients. Genes Immun 2012;13: 474-80. https://doi.org/10.1038/gene.2012.21
  89. Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Osterlund T. Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res 2010;316:627-37. https://doi.org/10.1016/j.yexcr.2009.10.018
  90. Zhou TB, Jiang ZP, Lin ZJ, Su N. Association of vitamin D receptor gene polymorphism with the risk of systemic lupus erythematosus. J Recept Signal Transduct Res 2015;35:8-14. https://doi.org/10.3109/10799893.2014.922577
  91. Zhang Y, Wang YF, Yang J, Zhang J, Sun L, Hirankarn N, et al. Meta-analysis of two Chinese populations identifies an autoimmune disease risk allele in 22q11.21 as associated with systemic lupus erythematosus. Arthritis Res Ther 2015;17:67. https://doi.org/10.1186/s13075-015-0577-6