DOI QR코드

DOI QR Code

Acoustic emission characteristics of marble under uniaxial cyclic loading

  • Fu, Bin (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology) ;
  • Tang, Chun'an (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
  • 투고 : 2020.05.11
  • 심사 : 2021.10.18
  • 발행 : 2021.11.25

초록

Intractable rock engineering problems encountered in practice are related to the behavior of rocks under different cyclic loadings, the damage evolution of rock subjected to cyclic loading is important for rock engineering design and construction. Three different cyclic loadings were conducted on marble to explore the acoustic emission (AE) parameters evolution during damage. It was found that the continuous decreasing correlation dimension and b value can be deemed as robust signal of the imminent rock failure. The additional cyclic loadings increase the AE events with low energy. The Realistic Failure Process Analysis (RFPA2D) code was implemented to reproduce the AE distribution evolution of the corresponding experiments. Numerical simulations indicate that the AE distribution changes from random to aggregate. The increasing stress leads to the failure mode of sample shifts from shear damage dominated to tensile damage dominant. The additional cyclic loadings increase the number of the shear damage elements.

키워드

과제정보

This work was supported by the National Key Research and Development Plan (Grant No. 2018YFC1505301), for which the authors are very grateful.

참고문헌

  1. Akdag, S., Karakus, M., Taheri, A., Nguyen, G. and Manchao, H. (2018), "Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions", Rock Mech. Rock Eng., 51(6), 1657-1682. https://doi.org/10.1007/s00603-018-1415-3.
  2. Cai, M. (2008), "Influence of stress path on tunnel excavation response - Numerical tool selection and modeling strategy", Tunn. Undergr. Sp. Tech, 23(6), 618-628. https://doi.org/10.1016/j.tust.2007.11.005.
  3. Cerfontaine, B. and Collin, F. (2018), "Cyclic and fatigue behaviour of rock materials: Review, interpretation and research perspectives", Rock Mech. Rock Eng., 51(2), 391-414. https://doi.org/10.1007/s00603-017-1337-5.
  4. Codeglia, D., Dixon, N., Fowmes, G.J. and Marcato, G. (2017), "Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms", Eng. Geol., 219(Mar), 21-31. https://doi.org/10.1016/j.enggeo.2016.11.021.
  5. Colombo Ing, S., Main, I.G. and Forde, M.C. (2003), "Assessing damage of reinforced concrete beam using 'b-value' analysis of acoustic emission signals", J. Mater. Civil. Eng., 15(3), 280-286. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280).
  6. Cox, S.J.D. and Meredith, P.G. (1993), "Microcrack formation and material softening in rock measured by monitoring acoustic emissions", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(1), 11-24. https://doi.org/10.1016/0148-9062(93)90172-a.
  7. Erarslan, N. (2016), "Microstructural investigation of subcritical crack propagation and Fracture Process Zone (FPZ) by the reduction of rock fracture toughness under cyclic loading", Eng. Geol., 208(Jun), 181-190. https://doi.org/10.1016/j.enggeo.2016.04.035.
  8. Goodman, R.E. (1963), "Subaudible noise during compression of rocks", Geol. Soc. Am. Bull., 74(4), 487. https://doi.org/10.1130/0016-7606(1963)74[487:Sndcor]2.0.Co;2.
  9. Grassberger, P. and Procaccia, I. (1984), "Dimensions and entropies of strange attractors from a fluctuating dynamics approach", Physica D, 13(1), 34-54. https://doi.org/10.1016/0167-2789(84)90269-0.
  10. Guo, H.J., Ji, M., Zhang, Y.D. and Zhang, M. (2018), "Study of mechanical property of rock under uniaxial cyclic loading and unloading", Adv. Civ. Eng. https://doi.org/10.1155/2018/1670180.
  11. Gutenberg, B. and Richter, C.F. (1936), "Magnitude and energy of earthquakes", Science (New York, N.Y.), 83(2147), 183-185. https://doi.org/10.1126/science.83.2147.183.
  12. Hatton, C.G., Main, I.G. and Meredith, P.G. (1993), "A comparison of seismic and structural measurements of scaling exponents during tensile subcritical crack-growth", J. Struct. Geol., 15(12), 1485-1495. https://doi.org/10.1016/0191-8141(93)90008-x.
  13. He, M.M., Huang, B.Q., Zhu, C.H., Chen, Y.S. and Li, N. (2018), "Energy dissipation-based method for fatigue life prediction of rock salt", Rock Mech. Rock Eng., 51(5), 1447-1455. https://doi.org/10.1007/s00603-018-1402-8.
  14. Jin, P., Wang, E. and Song, D. (2017), "Study on correlation of acoustic emission and plastic strain based on coal-rock damage theory", Geomech. Eng., 12(4), 627-637. https://doi.org/10.12989/gae.2017.12.4.627.
  15. Kaiser, E.J. (1950), "A study of acoustic phenomena in tensile test", Ph.D. Dissertation, Technical University of Munich, Munich.
  16. Kaiser, P.K., Yazici, S. and Maloney, S. (2001), "Mining-induced stress change and consequences of stress path on excavation stability-A case study", Int. J. Rock Mech. Min. Sci., 38(2), 167-180. https://doi.org/10.1016/S1365-1609(00)00038-1.
  17. Kim, J.-S., Kim, G.-Y., Baik, M.-H., Finsterle, S. and Cho, G.-C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
  18. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2014), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock Mech. Rock Eng., 48(2), 495-508. https://doi.org/10.1007/s00603-014-0590-0.
  19. Kong, B., Wang, E. and Li, Z. (2018), "Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process", Geomech. Eng., 15(5), 1125-1133. https://doi.org/10.12989/gae.2018.15.5.1125.
  20. Lei, X.L., Kusunose, K., Rao, M., Nishizawa, O. and Satoh, T. (2000), "Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring", J. Geophys. Res.-Sol. Ea., 105(B3), 6127-6139. https://doi.org/10.1029/1999jb900385.
  21. Li, D.X., Wang, E.Y., Kong, X.G., Ali, M. and Wang, D.M. (2019), "Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a pre-existing flaw of various inclinations under uniaxial compression", Int. J. Rock Mech. Min. Sci., 116(Apr), 38-51. https://doi.org/10.1016/j.ijrmms.2019.03.022.
  22. Liu, Y., Dai, F., Fan, P.X., Xu, N.W. and Dong, L. (2017), "Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression", Rock Mech. Rock Eng., 50(6), 1453-1471. https://doi.org/10.1007/s00603-017-1190-6.
  23. Lockner, D. (1993), "The role of acoustic emission in the study of rock fracture", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), 883-899. https://doi.org/10.1016/0148-9062(93)90041-B.
  24. Ma, T.H., Tang, C.A., Tang, S.B., Kuang, L., Yu, Q., Kong, D.Q. and Zhu, X. (2018), "Rockburst mechanism and prediction based on microseismic monitoring", Int. J. Rock Mech. Min. Sci., 110(Oct), 177-188. https://doi.org/10.1016/j.ijrmms.2018.07.016.
  25. Munoz, H. and Taheri, A. (2017), "Local damage and progressive localisation in porous sandstone during cyclic loading", Rock Mech. Rock Eng., 50(12), 3253-3259. https://doi.org/10.1007/s00603-017-1298-8.
  26. Nicksiar, M. and Martin, C.D. (2012), "Evaluation of methods for determining crack initiation in compression tests on lowporosity rocks", Rock Mech. Rock Eng., 45(4), 607-617. https://doi.org/10.1007/s00603-012-0221-6.
  27. Packard, N.H., Crutchfield, J.P., Farmer, J.D. and Shaw, R.S. (1980), "Geometry from a time-series", Phys. Rev. Lett., 45(9), 712-716. https://doi.org/10.1103/PhysRevLett.45.712.
  28. Pei, J., Fei, W. and Liu, J. (2016), "Spatial evolution and fractal characteristics of natural fractures in marbles under uniaxial compression loading based on the source location technology of acoustic emission", Environ. Earth Sci., 75(9), 828. https://doi.org/10.1007/s12665-016-5649-7.
  29. Rao, M. and Lakshmi, K.J.P. (2005), "Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture", Curr. Sci. India, 89(9), 1577-1582. https://www.jstor.org/stable/24110936.
  30. Rodriguez, P. and Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Eng. Fract. Mech., 210(1), 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027.
  31. Sharma, J.S., Chu, J. and Zhao, J. (1999), "Geological and geotechnical features of Singapore: an overview", Tunn. Undergr. Sp. Tech, 14(4), 419-431. https://doi.org/10.1016/s0886-7798(00)00005-5.
  32. Su, F.Q., Itakura, K.I., Deguchi, G. and Ohga, K. (2017), "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques", Appl. Energ., 189, 142-156. https://doi.org/10.1016/j.apenergy.2016.11.082.
  33. Sun, B., Zhu, Z.D., Shi, C. and Luo, Z.H. (2017), "Dynamic mechanical behavior and fatigue damage evolution of sandstone under cyclic loading", Int. J. Rock Mech. Min. Sci., 94, 82-89. https://doi.org/10.1016/j.ijrmms.2017.03.003.
  34. Sun, H., Liu, X.L. and Zhu, J.B. (2019), "Correlational fractal characterisation of stress and acoustic emission during coal and rock failure under multilevel dynamic loading", Int. J. Rock Mech. Min. Sci., 117(May), 1-10. https://doi.org/10.1016/j.ijrmms.2019.03.002.
  35. Taheri, A., Yfantidis, N., Olivares, C.L., Connelly, B.J. and Bastian, T.J. (2016), "Experimental study on degradation of mechanical properties of sandstone under different cyclic loadings", Geotech. Test. J., 39(4), 673-687. https://doi.org/10.1520/gtj20150231.
  36. Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249. https://doi.org/10.1016/s0148-9062(96)00039-3.
  37. Wang, Q.S., Chen, J.X., Guo, J.Q., Luo, Y.B., Wang, H.Y. and Liu, Q. (2019), "Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression", Bull. Eng. Geol. Environ., 78(3), 1427-1442. https://doi.org/10.1007/s10064-017-1189-y.
  38. Wang, Z.L., Yao, J.K., Tian, N.C., Zheng, J.B. and Gao, P. (2018), "Mechanical behavior and damage evolution for granite subjected to cyclic loading", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2018/4312494.
  39. Xie, H.P., Liu, J.F., Ju, Y., Li, J. and Xie, L.Z. (2011), "Fractal property of spatial distribution of acoustic emissions during the failure process of bedded rock salt", Int. J. Rock Mech. Min. Sci., 48(8), 1344-1351. https://doi.org/10.1016/j.ijrmms.2011.09.014.
  40. Xiong, L.F., Wu, S.C. and Zhang, S.H. (2018), "Mechanical behavior of a granite from wuyi mountain: Insights from strain-based approaches", Rock Mech. Rock Eng., 52(3), 719-736. https://doi.org/10.1007/s00603-018-1617-8.
  41. Yang, S.-q., Ni, H.-m. and Wen, S. (2014), "Spatial acoustic emission evolution of red sandstone during multi-stage triaxial deformation", J. Cent. South. Univ., 21(8), 3316-3326. https://doi.org/10.1007/s11771-014-2305-9.
  42. Zhang, C.D., Liang, W.G., Li, Z.G., Xu, S.G. and Zhao, Y.S. (2015), "Observations of acoustic emission of three salt rocks under uniaxial compression", Int. J. Rock Mech. Min. Sci., 77(C), 19-26. https://doi.org/10.1016/j.ijrmms.2015.03.030.
  43. Zhang, Y., Chen, Y.L., Yu, R.G., Hu, L.Q. and Irfan, M. (2017), "Effect of loading rate on the felicity effect of three rock types", Rock Mech. Rock Eng., 50(6), 1673-1681. https://doi.org/10.1007/s00603-017-1178-2.
  44. Zhang, Z.Z., Gao, F. and Shang, X.J. (2014), "Rock burst proneness prediction by acoustic emission test during rock deformation", J. Cent. South. Univ., 21(1), 373-380. https://doi.org/10.1007/s11771-014-1950-3.
  45. Zhou, S.W., Xia, C.C., Zhao, H.B., Mei, S.H. and Zhou, Y. (2017), "Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature", Acta Geophys., 65(5), 893-906. https://doi.org/10.1007/s11600-017-0073-2.
  46. Zhu, J.B., Zhou, T., Liao, Z.Y., Sun, L., Li, X.B. and Chen, R. (2018), "Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography", Int. J. Rock Mech. Min. Sci., 106(Jun), 198-212. https://doi.org/10.1016/j.ijrmms.2018.04.022.