References
- Allori, D., Bartoli, G., Mannini, C. and Procino, L. (2009), "Wind tunnel modelling of porous elements", ICWE13, 52-61.
- Amoroso, S.D. and Levitan, M.L. (2011), "Wind loads for high-solidity open-frame structures", Wind Struct., 14(1), 1-14. http://dx.doi.org/10.12989/was.2011.14.1.001.
- Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.
- Cao, J., Gao, H., Dou, L., Zhang, M., and Li, T. (2019), "Modelling flow in anisotropic porous medium with full permeability tensor", J. Physics: Conference Series, 1324(1), 012054. http://dx.doi.org/10.1088/1742-6596/1324/1/012054.
- Chang, C. (2006), "Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree", Wind Struct., 9(2), 147-158. http://dx.doi.org/10.12989/was.2006.9.2.147
- Chen, H. and Christensen, E.D. (2016), "Investigations on the porous resistance coefficients for fishing net structures", J. Fluids Struct., 65, 76-107. https://doi.org/10.1016/j.jfluidstructs.2016.05.005.
- Darcy, H. (1856), Les fontaines publiques de la ville de Dijon: exposition et application., Victor Dalmont.
- Feichtner, A., Mackay, E., Tabor, G., Thies, P.R. and Johanning, L. (2021), "Comparison of macro-scale porosity implementations for CFD modelling of wave interaction with thin porous structures", J. Marine Sci. Eng., 9(2), 150. https://doi.org/10.3390/jmse9020150.
- Forchheimer, P. (1901), "Wasserbewegung durch boden", Z. Ver. Deutsch, Ing., 45, 1782-1788.
- Giachetti, A. (2018), Wind Effects on Permeable Building Envelopes: A Two-Dimensional Exploratory Study, Ph.D. Dissertation, Technische Universitt Braunschweig. Int. J. Numer. Meth. Heat Fluid Flow. http://dx.doi.org/10.1108/HFF01-2019-0065.
- Kemper, F.H. and Feldmann, M. (2019), "Wasserbewegung durch boden", J. Wind Eng. Ind. Aerod., 184, 277-288. https://doi.org/10.1016/j.jweia.2018.10.011
- Knupp, P.M. and Lage, J.L. (1995), "Generalization of the Forchheimer-extended Darcy flow model to the tensor permeability case via a variational principle", J. Fluid Mech., 299, 97-104. https://doi.org/10.1017/S0022112095003430.
- Lasseux, D., Abbasian Arani, A.A., and Ahmadi, A. (2011), "On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media", Phys. Fluids, 23(7), 073103. https://doi.org/10.1063/1.3615514.
- Miguel, A.F. (1998), "Airflow through porous screens: from theory to practical considerations", Energy Build., 28(1), 63-69. https://doi.org/10.1016/S0378-7788(97)00065-0.
- Miguel, A.F., van de Braak, N.J. and Bot, G.P.A. (1997), "Analysis of the Airflow Characteristics of Green- house Screening Materials", J. Agricult. Eng. Re., 67(2), 105-112. https://doi.org/10.1006/jaer.1997.0157.
- OpenFOAM: User Guide v1906, https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-epsilon.html.
- Patursson, Robinson Swift, M., Tsukrov, I., Simonsen, K., Baldwin K., Fredriksson, D.W. and Celikkol, B. (2010), "Development of a porous media model with application to flow through and around a net panel", Ocean Eng., 37(2), 314-324. https://doi.org/10.1016/j.oceaneng.2009.10.001.
- Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.
- Richards, P.J. and Robinson, M. (1999), "Wind loads on porous structures", J. Wind Eng. Ind. Aerod., 83(1-3), 455-465. https://doi.org/10.1016/S0167-6105(99)00093-8.
- Soulaine, C. and Quintard, M. (2014), "On the use of a Darcy-Forchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packings", Int. J. Heat Mass Transfer, 74, 88-100. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.069.
- Tanner, P., Gorman, J. and Sparrow, E. (2019), "Flow-pressure drop characteristics of perforated plates", Int. J. Numer. Meth. Heat Fluid Flow.
- Teitel, M. (2010), "Using computational fluid dynamics simulations to determine pressure drops on woven screens", Biosyst. Eng., 105(2), 172-179. https://doi.org/10.1016/j.biosystemseng.2009.10.005.
- Teitel, M., Dvorkin, D., Haim, Y., Tanny J. and Seginer, I. (2009), "Comparison of measured and simulated flow through screens: Effects of screen inclination and porosity", Biosyst. Eng., 104(3), 404-416. https://doi.org/10.1016/j.biosystemseng.2009.07.006.
- Tropea, C. and Yarin, A.L. (1856), Springer Handbook of Experimental Fluid Mechanics, Springer Science & Business Media.
- Xu, M., Patruno, L., Lo, Y. and de Miranda, S. (2020), "On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step", J. Wind Eng. Ind. Aerod., 207, 104377. https://doi.org/10.1016/j.jweia.2020.104377.
- Yang, J.H. and Lee, S.L. (1999), "Effect of anisotropy on transport phenomena in anisotropic porous media", Int. J. Heat Mass Trans., 42(14), 2673-2681. https://doi.org/10.1016/S0017-9310(98)00334-2.