과제정보
This paper was supported by 2021 Baekseok University Research Fund
참고문헌
- F. E. Curtis & K. Scheinberg. (2017). Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning, The Operations Research Revolution, (pp89-113). INFORMS.
- H. Zhang et al. (2017). ZipML: training linear models with end-to-end low precision, and a little bit of deep learning, Proceedings of the 34th International Conference on Machine Learning, (pp. 4035-4043). PMLR.
- Z. Shi, Y. Fang, Y. Bu & G. Han. (2021). Convolutional Neural Network (CNN)-based Detection for Multi-Level-Cell NAND Flash Memory, in IEEE Communications Letters.
- S. Park et al. (2021). Highly-Reliable Cell Characteristics with 128-Layer Single-Stack 3D-NAND Flash Memory, 2021 Symposium on VLSI Technology. IEEE.
- S. Lee & J. Kim. (2016). Effective Lifetime-Aware Dynamic Throttling for NAND Flash-Based SSDs, IEEE Transactions on Computers, 65(4), 1075-1089 https://doi.org/10.1109/TC.2014.2349517
- G. H. Lee, S. Hwang, S, Yu J & H. Kim. (2021). Architecture and Process Integration Overview of 3D NAND Flash Technologies. Applied Sciences, 11(15), 6703. https://doi.org/10.3390/app11156703
- R. Cang, Q. Bahman & S. Farshid. (2004). Maintaining erase counts in non-volatile storage systems, United States Patent, US6831865B2.
- H. S. Kim, E. H. Nam, J. H. Yun, S. Lee & S. L. Min, (2017). P-BMS: A Bad Block Management Scheme in Parallelized Flash Memory Storage Devices, ACM Trans. Embedded Comput. Syst, 16(5s), 140:1-140:19.
- T. Y. Chen, S. H. Chi, M. C. Yang & T. Y. Chien. (2021). Enabling the Duo-phase Data Management to Realize Longevity Bit-alterable Flash Memory, in IEEE Transactions on Computers.
- H. Jang et, al. (2021), An SVM-Based NAND Flash Endurance Prediction Method, Micromahines, 12(7), 746. https://doi.org/10.3390/mi12070746