DOI QR코드

DOI QR Code

차세대 태양전지의 활용 동향 및 스마트 텍스타일 하이브리드 에너지 하베스팅 소자의 미래전망에 관한 연구 : 산업 소재와의 융합 중심

A Study on the Application Trends of Next-Generation Solar Cells and the Future Prospects of Smart Textile Hybrid Energy Harvesting Devices : Focusing on Convergence with Industrial Materials

  • 박붕익 (대구대학교 자유전공학부)
  • 투고 : 2021.08.31
  • 심사 : 2021.11.20
  • 발행 : 2021.11.28

초록

본 논문에서는 차세대 태양전지로 대표되는 유기, 염료 감응형, 페로브스카이트 태양전지의 최신 연구 동향과 건축, 조형예술, 의류패션 등 분야를 막론한 다양한 산업의 소재로의 과제와 활용 가능성을 분석하였다. 더불어, 웨어러블 IoT 장치와 결합하여 자연 및 인공광과 우리 몸의 움직임에 따라 생성되는 크고 작은 진동 에너지를 전기에너지로 공급하는 역할을 하게 될 '스마트 텍스타일 하이브리드 에너지 하베스팅 소자'의 새로운 미래전망과 그 가능성을 제시하였다. 차세대 태양전지와 마찰·압전소자를 융합한 '하이브리드 텍스타일 에너지 하베스팅 디바이스'는 4차 산업혁명 시대의 웨어러블 IoT 기기에 소재 자체로 결합하여 새로운 '융합 일체형 스마트 의류'로 발전할 것이다. 이 연구가 제안한 차세대 나노기술과 소자가 에너지 하베스팅 기능을 갖는 스마트 섬유 소재 분야에 적용되고, 미래 의류 산업에 융합되어 의료, 헬스케어 등 다양한 분야에 AI 서비스 제공하는 창의적인 제품으로 진화하는 패러다임의 전환점이 되길 바란다.

In this paper, we analyzed the latest research trends, challenges, and potential applications of next-generation solar cell materials in various industrial fields. In addition, future prospects and possibilities of Smart Textile Hybrid Energy Harvesting Devices that will supply electricity by combining with wearable IoT devices are presented. The hybrid textile energy harvesting device fused next-generation solar cells with tribo-piezoelectric devices will develop into new 'Convergence Integrated Smart Wear' by combining the material itself with wearable IoT devices in the era of the 4th industrial revolution. The next-generation nanotechnology and devices proposed in this paper will be applied to the field of smart textile with an energy harvesting function. And we hope it will be a paradigm shift that evolves into creative products which provide AI services such as medical & healthcare by convergence with the future smart wear industry.

키워드

참고문헌

  1. M. Riede, D. Spoltore & Karl. (2021). Organic Solar Cells-The Path to Commercial Success. Advanced Energy Materials, 11(1), 2002653. DOI : 10.1002/aenm.202002653
  2. Intergovernmental Panel on Climate Change(IPCC). (2020). Global warming of 1.5 ℃, (Online). https://www.ipcc.ch/sr15/
  3. K. U. Kwon. (2019). A Study on the Energy Performance Evaluation of Building Evaporative Cooling System for Building Construction in Response to Climate Change. Journal of Convergence for Information Technology, 9(1), 54-60. DOI : 10.22156/CS4SMB.2019.9.1.054
  4. D. S. Seo. (2021). EV Energy Convergence Plan for Reshaping the EuropeanAutomobile Industry According to the Green Deal Policy. Journal of Convergence for Information Technology, 11(6), 40-48. DOI : 10.22156/CS4SMB.2021.11.06.040
  5. H. J. Park. (2019). A Study on the Educational Game Design for Practicing Energy Saving in Elementary School Students. Journal of Convergence for Information Technology, 9(5), 14-20. DOI : 10.22156/CS4SMB.2019.9.5.014
  6. R. M. Elavarasan et al. (2020). A Comprehensive Review on Renewable Energy Development, Challenges, and Policies of Leading Indian States With an International Perspective. IEEE Access, 8, 74432-74457. DOI: 10.1109/ACCESS.2020.2988011
  7. A. S. Subbiah et al. (2020). High-Performance Perovskite Single-Junctionand Textured Perovskite /Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Letters, 5(9), 3034-3040. DOI : 10.1021/acsenergylett.0c01297
  8. J. Cheng et al. (2020). Intensification of Vertical Phase Separation for Efficient Polymer Solar Cell via Piecewise Spray Assisted by a Solvent Driving Force. RRL Solar, 4(3), 1900458. DOI : 10.1002/solr.201900458
  9. M. Buffiere et al. (2020). Inkjet-Printed Compact TiO2 Electron Transport Layer for Perovskite Solar Cells. Energy Technology 8(10), 2000330. DOI : 10.1002/ente.202000330
  10. Y. Cai et al. (2021). A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Applied Materials Early View, 33(33), 2101733. DOI : 10.1002/adma.202101733
  11. L. Li et al. (2018). Recent advances of fexible perovskite solar cells. Journal of Energy Chemistry, 27(3), 673-689. DOI : 10.1016/j.jechem.2018.01.003
  12. Q. Li & A. Zanelli. (2021). A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems. Renewable and Sustainable Energy Reviews, 139, 110678. DOI : 10.1016/j.rser.2020.110678
  13. J. Jeong et al. (2021). Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381-385. DOI : 10.1038/s41586-021-03406-5
  14. J. Zhang, W. Zhang, H. M. Cheng & S. Silva. (2020). Critical review of recent progress of flexible perovskite solar cells. Materials Today, 39, 66-88. DOI : 10.1016/j.mattod.2020.05.002
  15. M. Shabbir, S. Ahmed & J. N. Sheikh. (2020). Textiles in Solar Cell Applications. Frontiers of Textile Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification Techniques. DOI : 10.1002/9781119620396.ch10
  16. L. Xu et al. (2020). Perovskite solar cell textile working at 40 to 160℃. Journal of Materials Chemistry A, 8, 5476-5483. DOI : 10.1039/C9TA13785H
  17. B. I. Park. (2020). A Study on the Latest Trends and Development Prospects of Wearable Healthcare Industry: Focusing on Healthcare Products and Latest Research of a Renowned International Journal. Journal of Next-generation Convergence Technology Association, 4(2), 161-172. DOI : 10.33097/JNCTA.2020.04.02.161
  18. Y. J. You et al. (2019). Highly Efficient Indoor Organic Photovoltaics with Spectrally Matched Fluorinated Phenylene Alkoxy benzothiadiazole Based Wide Bandgap Polymers. Advanced Functional Materials, 29(27), 1901171. DOI : 10.1002/adfm.201901171
  19. B. M. Kim et al. (2020). Indoor light energy harvesting dye sensitized photo rechargeable battery. Energy & Environmental Science, 13, 1473-1480. DOI : 10.1039/c9ee03245b
  20. M. H. Lee et al. (2021). Electrochemically Induced Crystallite Alignment of Lithium Manganese Oxide to Improve Lithium Insertion Kinetics for Dye-Sensitized Photorechargeable Batteries. ACS Energy Letters, 6(4), 1198-1204. DOI : 10.1021/acsenergylett.0c02473
  21. J. Zhu et al. (2021). Machine learning enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application. Nano Energy, 86, 106035. DOI : 10.1016/j.nanoen.2021.106035